
IBM Parallel Environment for AIX 5L

Operation and Use, Volume 1

Using the Parallel Operating Environment

Version 4 Release 3.0

SA22-7948-05

���

IBM Parallel Environment for AIX 5L

Operation and Use, Volume 1

Using the Parallel Operating Environment

Version 4 Release 3.0

SA22-7948-05

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 163.

Sixth Edition (October 2006)

This edition applies to version 4, release 3, modification 0 of IBM Parallel Environment for AIX 5L (product number

5765-F83) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition

replaces SA22-7948-04. Significant changes or additions to the text and illustrations are indicated by a vertical line (|

) to the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . v

About this book . vii

Who should read this book . vii

How this book is organized . vii

Overview of contents . vii

Conventions and terminology used in this book viii

Abbreviated names . viii

Prerequisite and related information ix

Using LookAt to look up message explanations x

How to send your comments . x

National language support (NLS) x

Summary of changes for Parallel Environment 4.3 xi

Chapter 1. Introduction . 1

PE Version 4 Release 3 migration information 4

Chapter 2. Executing parallel programs 7

Executing parallel programs using POE 7

Step 1: Compile the program 7

Step 2: Copy files to individual nodes 9

Step 3: Set up the execution environment 10

Step 4: Invoke the executable 27

Controlling program execution 34

Specifying develop mode . 35

Making POE wait for processor nodes 35

Making POE ignore arguments 36

POE argument limits . 37

Managing standard input, output, and error 37

Determining which nodes will participate in parallel file I/O 44

Checkpointing and restarting programs 45

Managing task affinity on large SMP nodes 48

Running POE from a shell script 50

POE user authorization . 50

Cluster based security . 50

Using AIX user authorization 50

Using POE with MALLOCDEBUG 50

Using POE with AIX large pages 51

Chapter 3. Managing POE jobs 53

Multi-task corefile . 53

Support for performance improvements 54

Using MP_BUFFER_MEM . 54

Using MP_CSS_INTERRUPT 57

Specifying the format of corefiles or suppressing corefile generation 58

Generating standard AIX corefiles 59

Generating corefiles for sigterm 59

Writing corefile information to standard error 59

Generating lightweight corefiles 60

Managing large memory parallel jobs 61

Stopping a POE job . 61

Cancelling and killing a POE job 62

Detecting remote node failures 62

© Copyright IBM Corp. 1993, 2006 iii

||

||

Considerations for using the high performance switch interconnect 62

Scenario 1: Explicitly allocating nodes with TWS LoadLeveler 63

Scenario 2: Implicitly allocating nodes with TWS LoadLeveler 64

Scenario 3: Implicitly allocating nodes with TWS LoadLeveler (mixing

dedicated and shared adapters) 65

Considerations for data striping, failover and recovery with PE 66

Submitting a batch POE job using TWS LoadLeveler 73

Submitting an interactive POE job using a TWS LoadLeveler command file 75

Generating an output TWS LoadLeveler job command file 76

Running programs under the C shell 77

Parallel file copy utilities . 78

Using RDMA . 79

Improving Application Scalability Performance 80

POE priority adjustment coscheduler 80

AIX Dispatcher tuning . 82

Appendix A. Parallel Environment commands 85

mcp . 86

mcpgath . 88

mcpscat . 92

mpamddir . 96

mpcc_r . 97

mpCC_r . 100

mpiexec . 103

mpxlf_r . 104

mpxlf90_r . 107

mpxlf95_r . 110

poe . 113

poeckpt . 133

poekill . 135

poerestart . 136

rset_query . 138

Appendix B. POE Environment variables and command line flags 141

MP_BUFFER_MEM details . 155

Appendix C. Accessibility features for PE 161

Accessibility features . 161

Keyboard navigation . 161

IBM and accessibility . 161

Notices . 163

Trademarks . 165

Acknowledgments . 166

Glossary . 167

Index . 175

iv IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

||

Tables

 1. Typographic conventions . viii

 2. Compiling a program . 8

 3. Number of tasks in a parallel job and maximum number of tasks on a node. 11

 4. Execution setup summary for User Space (for a clustered server with LoadLeveler) 13

 5. Execution setup summary for IP (for a clustered server with LoadLeveler) 13

 6. Execution environment setup summary (for a pSeries network cluster or a mixed system, whose

additional nodes are not part of the LoadLeveler cluster) 14

 7. Node allocation summary . 14

 8. Example of setting the MP_PROCS environment variable or -procs command line flag 16

 9. Adapter/CPU default settings . 19

10. Adapter/CPU use under LoadLeveler . 20

11. Example of setting the MP_SAVEHOSTFILE environment variable or -savehostfile command line

flag . 20

12. When to set the MP_HOSTFILE environment variable 21

13. Example of setting the MP_HOSTFILE environment variable or -hostfile command line flag when

using a nondefault host list file . 22

14. Setting the MP_HOSTFILE environment variable or -hostfile command line flag when requesting

nonspecific node allocation without a host list file 22

15. Example of setting the MP_RESD environment variable or -resd command line flag 23

16. How the value of MP_RESD is interpreted . 23

17. Example of setting the MP_EUILIB environment variable or -euilib command line flag 24

18. Example of setting the MP_EUILIBPATH environment variable or -euilibpath command line flag 24

19. When to set the MP_EUIDEVICE environment variable 24

20. Settings for MP_EUIDEVICE . 25

21. Example of setting the MP_EUIDEVICE environment variable or -euidevice command line flag 25

22. When to set the MP_MSG_API environment variable 25

23. When to set the MP_RMPOOL environment variable 26

24. Example of setting the MP_RMPOOL environment variable or -rmpool command line flag 26

25. LoadLeveler node allocation . 27

26. Example of setting the MP_PGMMODEL environment variable or -pgmmodel command line flag 28

27. Example of setting the MP_CMDFILE environment variable or -cmdfile command line flag 31

28. Example of setting the MP_NEWJOB environment variable or -newjob command line flag 32

29. Example of specifying a POE commands file from which the Partition Manager should read job

steps . 34

30. Example of setting the MP_EUIDEVELOP environment variable or -euidevelop command line flag 35

31. Example of setting the MP_RETRY and MP_RETRYCOUNT environment variables or -retry and

-retrycount command line flags . 36

32. Example of specifying multiple input mode with the MP_STDINMODE environment variable or

-stdinmode command line flag . 38

33. Example of specifying single input mode with the MP_STDINMODE environment variable or

-stdinmode command line flag . 38

34. Example of specifying unordered output mode with the MP_STDOUTMODE environment variable

or -stdoutmode command line flag . 40

35. Example of specifying ordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag . 41

36. Example of specifying single output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag . 42

37. Example of setting the MP_LABELIO environment variable or -labelio command line flag 42

38. MP_INFOLEVEL values and associated levels of message reporting 43

39. Example of setting MP_INFOLEVEL to verbose 43

40. Example of setting the MP_PMDLOG environment variable or -pmdlog command line flag 44

41. Example of setting the MP_IONODEFILE environment variable or -ionodefile command line flag 45

42. MP_COREFILE_FORMAT settings . 59

© Copyright IBM Corp. 1993, 2006 v

||
||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

43. Example of writing corefile information to standard error by setting the MP_COREFILE_FORMAT

environment variable or -corefile_format command line flag 60

44. Example of specifying lightweight corefiles by setting the MP_COREFILE_FORMAT environment

variable or -corefile_format command line flag . 60

45. Failover and recovery operations . 69

46. Example of setting the MP_LLFILE environment variable or -llfile command line flag 75

47. Example of setting the MP_SAVE_LLFILE environment variable or -save_llfile command line flag 77

48. POE environment variables and command line flags for partition manager control 142

49. POE environment variables and command line flags for job specification 146

50. POE environment variables and command line flags for I/O control 148

51. POE environment variables and command line flags for diagnostic information 149

52. POE environment variables and command line flags for Message Passing Interface (MPI) 150

53. POE environment variables and command line flags for corefile generation 157

54. Other POE environment variables and command line flags 158

vi IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|
|
|
|

About this book

This book describes the IBM® Parallel Environment (PE) program product and its

Parallel Operating Environment (POE). It shows how to use POE’s facilities to

compile, execute, and analyze parallel programs.

This book concentrates on the actual commands and how to use them, as opposed

to the writing of parallel programs. For this reason, you should use this book in

conjunction with IBM Parallel Environment: MPI Subroutine Reference and IBM

Parallel Environment: MPI Programming Guide. New users should refer to IBM

Parallel Environment: Introduction, for basic and introductory information on PE.

This book assumes that AIX 5L™ Version 5.3 Technology Level 5300-05 (AIX 5L

V5.3 TL 5300-05), X Windows® System, and the PE software are already installed.

It also assumes that you have been authorized to run the Parallel Operating

Environment (POE). The PE software is designed to run on an eServer™ pSeries®

server.

Note: AIX 5L Version 5.3 Technology Level 5300-05 or AIX 5L V5.3 TL 5300-05

identify the specific maintenance level required to run PE 4.3. The name AIX

5.3 is used in more general discussions.

For complete information on installing the PE software and setting up users, see

IBM Parallel Environment: Installation.

Who should read this book

This book is designed primarily for end users and application developers. It is also

intended for those who run parallel programs, and some of the information covered

should interest system administrators. Readers should have knowledge of the AIX®

operating system and the X-Window system. Where necessary, this book provides

some background information relating to these areas. More commonly, this book

refers you to the appropriate documentation.

How this book is organized

Overview of contents

This book contains the following information:

v Chapter 1, “Introduction,” on page 1 is a quick overview of the PE program

product. It describes the various PE components, and how you might use each in

developing a parallel application program.

v Chapter 2, “Executing parallel programs,” on page 7 describes how to compile

and execute parallel programs using the Parallel Operating Environment (POE).

v Chapter 3, “Managing POE jobs,” on page 53 includes information on allocating

nodes with Tivoli®® Workload Scheduler LoadLeveler® (LoadLeveler), and the

environment variables to use when running your applications.

v Appendix A, “Parallel Environment commands,” on page 85 contains the manual

pages for the PE commands discussed throughout this book.

v Appendix B, “POE Environment variables and command line flags,” on page 141

describes the environment variables you can set to influence the execution of

parallel programs and the operation of PE tools. This appendix also describes

© Copyright IBM Corp. 1993, 2006 vii

|
|

|
|

|
|
|

the command line flags associated with each of the environment variables. When

invoking a parallel program, you can use these flags to override the value of an

environment variable.

Conventions and terminology used in this book

Note that in this document, LoadLeveler® is also referred to as Tivoli® Workload

Scheduler LoadLeveler and TWS LoadLeveler.

This book uses the following typographic conventions:

 Table 1. Typographic conventions

Convention Usage

bold Bold words or characters represent system elements that you must

use literally, such as: command names, file names, flag names,

path names, PE component names (poe, for example), and

subroutines.

constant width Examples and information that the system displays appear in

constant-width typeface.

italic Italicized words or characters represent variable values that you

must supply.

Italics are also used for book titles, for the first use of a glossary

term, and for general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

\ The continuation character is used in coding examples in this book

for formatting purposes.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this book follow.

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

viii IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

NetCDF Network Common Data Format

PCT Performance Collection Tool

PE IBM® Parallel Environment for AIX®

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries IBM eServer pSeries

PVT Profile Visualization Tool

RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

STDERR standard error

STDIN standard input

STDOUT standard output

UTE Unified Trace Environment

System x IBM System x

Prerequisite and related information

The Parallel Environment for AIX library consists of:

v IBM Parallel Environment: Introduction, SA22-7947

v IBM Parallel Environment: Installation, GA22-7943

v IBM Parallel Environment: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment: Operation and Use, Volume 2, SA22-7949

v IBM Parallel Environment: MPI Programming Guide, SA22-7945

v IBM Parallel Environment: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment: Messages, GA22-7944

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM eServer Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the book’s

publication number. The publication number for each of the Parallel Environment

books is listed after the book title in the preceding list.

About this book ix

||

||

|

|

|

|

|

|

|

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux® handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality

information. If you have comments about this book or other PE documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of

the message catalogs are shipped with the PE licensed program, but your site may

be using its own translated message catalogs. The PE components use the AIX

environment variable NLSPATH to find the appropriate message catalog. NLSPATH

specifies a list of directories to search for message catalogs. The directories are

searched, in the order listed, to locate the message catalog. In resolving the path to

the message catalog, NLSPATH is affected by the values of the environment

variables LC_MESSAGES and LANG. If you get an error saying that a message

catalog is not found and you want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see AIX: General Programming

Concepts: Writing and Debugging Programs.

x IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Summary of changes for Parallel Environment 4.3

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

v PE 4.3 supports only AIX 5L Version 5.3 Technology Level 5300-05, or later

versions.

AIX 5L Version 5.3 Technology Level 5300-05 is referred to as AIX 5L V5.3 TL

5300-05 or AIX 5.3.

v Support for Parallel Systems Support Programs for AIX (PSSP), the SP™

Switch2, POWER3™ servers, DCE, and DFS™ has been removed. PE 4.2 is the

last release that supported these products.

v PE Benchmarker support for IBM System p5™ model 575 has been added.

v A new environment variable, MP_TLP_REQUIRED is available to detect the

situation where a parallel job that should be using large memory pages is

attempting to run with small pages.

v A new command, rset_query, for verifying that memory affinity assignments

have been performed.

v Performance of MPI one-sided communication has been substantially improved.

v Performance improvements to some MPI collective communication subroutines.

v The default value for the MP_BUFFER_MEM environment variable, which

specifies the size of the Early Arrival (EA) buffer, is now 64 MB for both IP and

User Space. In some cases, 32 bit IP applications may need to be recompiled

with more heap or run with MP_BUFFER_MEM of less than 64 MB. For more

details, see the migration information in Chapter 1 of IBM Parallel Environment:

Operation and Use, Volume 1 and Appendix E of IBM Parallel Environment: MPI

Programming Guide.

About this book xi

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

xii IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Chapter 1. Introduction

The IBM Parallel Environment for AIX program product (PE) is an environment

designed for developing and executing parallel Fortran, C, or C++ programs. PE

consists of components and tools for developing, executing, debugging, profiling,

and tuning parallel programs.

PE is a distributed memory message passing system. It runs on the pSeries

platform using the AIX 5L Version 5.3 Technology Level 5300-05 (AIX 5L V5.3 TL

5300-05) operating system. Specifically, you can use PE to execute parallel

programs on a networked cluster of pSeries processors, including a single

processor or a single workstation. This also includes systems supporting the

pSeries High Performance Switch.

IBM eServer pSeries processors of your system are called processor nodes. If you

are using a Symmetric Multiprocessor (SMP) system, it is important to know that,

although an SMP node has more than one processing unit, it is still considered, and

referred to as, a processor node.

A parallel program executes as a number of individual, but related, parallel tasks on

a number of your system’s processor nodes. These parallel tasks taken together

are sometimes referred to as a parallel job. The group of parallel tasks is called a

partition. The processor nodes are connected on the same network, so the parallel

tasks of your partition can communicate to exchange data or synchronize execution:

v Your system may have an optional high performance switch for communication.

The switch increases the speed of communication between nodes. It supports a

high volume of message passing with increased bandwidth and low latency.

v Your system administrator can divide its nodes into separate pools. A

LoadLeveler system pool is a subset of processor nodes and is given an

identifying pool name or number.

PE supports the two basic parallel programming models – SPMD and MPMD. In the

SPMD (Single Program Multiple Data) model, the same program is running as each

parallel task of your partition.The tasks, however, work on different sets of data. In

the MPMD (Multiple Program Multiple Data) model, each task may be running a

different program. A typical example of this is the master/worker MPMD program. In

a master/worker program, one task – the master – coordinates the execution of all

the others – the workers.

Note: While the remainder of this introduction describes each of the PE

components and tools in relation to a specific phase of an application’s life

cycle, this does not imply that they are limited to one phase. They are

ordered this way for descriptive purposes only; you will find many of the tools

useful across an application’s entire life cycle.

The application developer begins by creating a parallel program’s source code. The

application developer might create this program from scratch or could modify an

existing serial program. In either case, the developer places calls to Message

Passing Interface (MPI) or Low-level Application Programming Interface (LAPI)

routines so that it can run as a number of parallel tasks. This is known as

parallelizing the application. MPI provides message passing capabilities for the

current version of PE Version 4.

© Copyright IBM Corp. 1993, 2006 1

|
|
|
|
|
|

Note: Throughout this information, when referring to anything not specific for MPI,

the term message passing will be used. For example:

message passing program

message passing routine

message passing call

The message passing calls enable the parallel tasks of your partition to

communicate data and coordinate their execution. The message passing routines,

in turn, call communication subsystem library routines which handle communication

among the processor nodes. There are two separate implementations of the

communication subsystem library – the Internet Protocol (IP) Communication

Subsystem and the User Space (US) Communication Subsystem. While the

message passing application interface remains the same, the communication

subsystem libraries use different protocols for communication among processor

nodes. The IP communication subsystem uses Internet Protocol, while the User

Space communication subsystem is designed to exploit the high performance

switch. The communication subsystem library implementations are dynamically

loaded when you invoke the program. For more information on the message

passing subroutine calls, refer to IBM Parallel Environment: MPI Subroutine

Reference and IBM Parallel Environment: Introduction.

In addition to message passing communication, the Parallel Environment supports a

separate communication protocol known as the Low-level Application

Programming Interface (LAPI). LAPI differs from MPI in that it is based on an

“active message style” mechanism that provides a one-sided communications

model. That is, the application at one process initiates an operation, and the

completion of that operation does not require any other process to take an

application-level complementary action.

LAPI is used as a common transport protocol for MPI, for both IP and User Space.

LAPI is part of Reliable Scalable Cluster Technology (RSCT), but is also shipped on

the PE product CD (in the rsct.lapi.rte file set).Refer to the IBM RSCT: LAPI

Programming Guide for more information.

After writing the parallel program, the application developer then begins a cycle of

modification and testing. The application developer now compiles and runs his

program from his home node using the Parallel Operating Environment (POE).

The home node can be any workstation on the LAN that has PE installed. POE is

an execution environment designed to hide, or at least smooth, the differences

between serial and parallel execution.

To assist with node allocation for job management, Tivoli Workload Scheduler

(TWS) LoadLeveler (LoadLeveler) provides resource management function. You can

run parallel programs on a cluster of processor nodes running LoadLeveler or a

clustered server that uses LoadLeveler. LoadLeveler not only provides node

allocation for jobs using the User Space communication subsystem, but also

provides management for other clustered nodes, or for nodes being used for jobs

other than User Space. LoadLeveler can also be used for POE batch jobs. See

Tivoli Workload Scheduler LoadLeveler: Using and Administering for more

information on this job management system.

In general, with POE, you invoke a parallel program from your home node and run

its parallel tasks on a number of remote nodes. As much as possible, the remote

nodes should be managed to ensure that when they are running the tasks of your

parallel program, none of them are being used for other activities. When you invoke

2 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|
|
|

a program on your home node, POE starts your Partition Manager which allocates

the nodes of your partition and initializes the local environment. Depending on your

hardware and configuration, the Partition Manager uses a host list file,

LoadLeveler, or both a host list file and LoadLeveler to allocate nodes. A host list

file contains an explicit list of node requests, while LoadLeveler can allocate nodes

from one or more system pools implicitly based on their availability.

POE provides an option to enable you to specify whether your program will use

MPI, LAPI, or both. Using this option, POE ensures that each API initializes properly

and informs LoadLeveler which APIs are used so each node is set up completely.

For Single Program Multiple Data (SPMD) applications the Partition Manager

executes the same program on all nodes. For Multiple Program Multiple Data

(MPMD) applications, the Partition Manager prompts you for the name of the

program to load as each task. The Partition Manager also connects standard I/O to

each remote node so the parallel tasks can communicate with the home node.

Although you are running tasks on remote nodes, POE allows you to continue using

the standard UNIX® and AIX execution techniques with which you are already

familiar. For example, you can redirect input and output, pipe the output of

programs, or use shell tools. POE includes:

v A number of parallel compiler scripts. These are shell scripts that call the C,

C++, or Fortran compilers while also linking in an interface library to enable

communication between your home node and the parallel tasks running on the

remote nodes. You dynamically link in a communication subsystem

implementation when you invoke the executable.

v A number of POE Environment Variables you can use to set up your execution

environment. These are environment variables you can set to influence the

operation of POE. These environment variables control such things as how

processor nodes are allocated, what programming model you are using, and how

standard I/O between the home node and the parallel tasks should be handled.

Most of the POE environment variables also have associated command line flags

that enable you to temporarily override the environment variable value when

invoking POE and your parallel program.

The following tools are discussed in IBM Parallel Environment: Operation and Use,

Volume 2 and allow you to debug and tune parallel programs.

The parallel debugging facility is pdbx – a line-oriented debugger based on the

dbx debugger.

After the parallel program has been debugged, you will want to tune the program

for optimal performance. To do this, you use the PE parallel profiling capability to

analyze the program. The parallel profiling capability enables you to use the AIX

Xprofiler graphical user interface, as well as the AIX commands prof and gprof on

parallel programs.

PE Benchmarker enables you to obtain an MPI trace of all or selected regions of a

parallel application and to obtain profiling information on all or selected regions of a

parallel application.

Note: Once the parallel program is tuned to your satisfaction, you might prefer to

execute it using a job management system such as IBM LoadLeveler. If you

do use a job management system, consult its documentation for information

on its use.

Chapter 1. Introduction 3

PE Version 4 Release 3 migration information

If you are migrating from an earlier release of PE, you should be aware of some

differences that you need to consider before installing and using PE Version 4

Release 3. To find out which release of PE you currently have installed, use the

command:

lslpp -ha ppe.poe

AIX compatibility

 PE Version 4 Release 3 commands and applications are compatible with

Version 5.3, or later only, and not with earlier versions of AIX.

MPI library support

 PE Version 4 Release 3 provides support for its threaded version of the

MPI library only. An archive (libmpi.a) containing symbols resolving

references made by non-threaded executables is also shipped to support

binary compatibility. These merely map to the corresponding threaded

library symbols.

 Existing applications built as non-threaded applications will execute as

single threaded applications in the PE Version 4 Release 3 environment.

Users and application developers should understand the implications of

their programs running as threaded applications, as described in the IBM

Parallel Environment for AIX: MPI Programming Guide.

LAPI support

 Beginning with PE 4.3, LAPI will be shipped on the PE CD, so you no

longer need to obtain it from RSCT. Note that the file set name remains the

same; rsct.lapi.rte.

 Additionally, MPI uses LAPI as a common transport protocol. If you are

using the LAPI API to develop a message passing application, you may find

useful information in the IBM RSCT for AIX 5L: LAPI Programming Guide.

Binary compatibility

 Binary compatibility is supported for existing applications that have been

dynamically linked or created with the non-threaded compiler scripts from

previous versions of POE. There is no support for statically bound

executables.

 Existing 32-bit applications that use striping may encounter memory usage

conflicts and may need to be recompiled or use different run-time options in

order to properly execute. See “Considerations for data striping, failover and

recovery with PE” on page 66 for more information. 64-bit applications are

not affected.

AIX profiling support

AIX 5L V5.3 TL 5300-05 has added enhanced application program profiling,

with support for thread-level profiling, in addition to other capabilities that

include allowing the user to specify their own file name in place of the

default. This results in changes in the way POE handles profiling and

naming of parallel program profiling output files. Refer to IBM Parallel

Environment: Operation and Use, Volume 2 for further details.

 Users may need to consider the differences in profiling between AIX 5.2

and AIX 5L V5.3 TL 5300-05 when they migrate to AIX 5L V5.3 TL 5300-05.

Obsolete parallel utility routines

4 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|

|
|

|

|

|
|
|

|
|
|

|

|
|

|
|

The following parallel utility routines are obsolete:

v MP_SETINTRDELAY, mpc_setintrdelay

v MP_QUERYINTRDELAY, mpc_queryintrdelay

v MP_NLIGHTS, mpc_nlights

v MP_MARKER, mpc_marker

While programs will remain binary compatible, calls to these routines should

be removed and no longer made in application programs.

Obsolete POE environment variables and command line flags

 The following environment variables and command line flags are obsolete:

v MP_TRACELEVEL, -trace_level

v MP_TMPDIR, -tmpdir

v MP_TRACEDIR, -tracedir

v MP_TBUFFWRAP, -tbuffwrap

v MP_TWRAP, -twrap

v MP_TBUFFSIZE, -tbuffsize

v MP_TTEMPSIZE, -ttempsize

v MP_VTLIBPATH, -vtlibpath

v MP_USR_PORT, -usr_port

It is recommended that these variables and command line flags be removed

from scripts and commands used to run POE applications.

Obsolete compiler script options

 The following compiler script options should no longer be included in

Makefiles:

v -d7

v -lvtd and lvtd_r

Note: If you are using Fortran and are making changes to your

configuration files, it is important to ensure that those files do not

contain references to obsolete flags, such as the ones listed

above, or to stanzas that contain obsolete flags.

Program marker array and VT trace function removed

Support for the program marker array and VT trace have been removed. Be

sure to remove calls to these functions.

User Space applications with MP_EUIDEVICE/-euidevice

Existing User Space applications that set MP_EUIDEVICE/-euidevice to

sn_single or css0 on systems using multiple adapters and multiple networks

will not benefit from the performance improvements provided by using the

sn_all or csss value. In this case, you may want to change the

MP_EUIDEVICE/-euidevice settings for such applications. Also note that

css1 can no longer be specified as a value for MP_EUIDEVICE or

-euidevice. See “Step 3f: Set the MP_EUIDEVICE environment variable”

on page 24 for more information.

Shared memory default changed

The use of shared memory for message passing between tasks running on

the same node has been changed so that all invocations of POE will utilize

shared memory as the default. For 64-bit applications, this includes using

the shared memory enhanced collective communications algorithms. To run

Chapter 1. Introduction 5

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|
|
|

|
|
|

without using shared memory, change the value of the

MP_SHARED_MEMORY environment variable or -shared_memory

command line flag to no.

PSSP and the SP Switch are no longer supported

Beginning with PE 4.3, PSSP (Parallel System Support Programs) is no

longer supported. Support for the SP Switch ended with the release of 4.2.

Task and memory affinity with LoadLeveler

Users that specify the MP_TASK_AFFINITY or -task_affinity POE options

should be aware that with LoadLeveler 3.3.1 or later versions, LoadLeveler

now handles scheduling affinity. As a result, memory and task affinity must

be enabled in the LoadLeveler configuration file (using the

RSET_SUPPORT keyword). In addition, MP_TASK_AFFINITY settings are

ignored with batch jobs, and jobs requiring memory affinity must specify the

appropriate LoadLeveler job control keywords to run with memory affinity.

For more information, see “Managing task affinity on large SMP nodes” on

page 48.

Some 32-bit applications that ran correctly before could fail with "out of

memory" error

Some simple ways work around this problem are suggested.

 The default size of the Early Arrival buffer has been changed from 2.8 MB

to 64 MB for 32-bit IP applications. The 2.8 MB used in previous releases

can lead to performance problems when the job has more than a few tasks.

A side effect of the new default could cause your application to fail due to

insufficient memory.

 By default, a 32-bit application can malloc approximately 200 MB before

malloc fails. In previous releases, an IP application needed to allocate

enough memory for the application itself, plus the 2.8 MB that was required

for the Early Arrival buffer. If the total amount of required memory was less

than about 200 MB, the application ran correctly. However, now that the

Early Arrival buffer requires 64 MB of memory, IP applications that

previously ran correctly may now fail due to insufficient memory.

 Also note that LAPI allocates 32 MB for sn_single and 64 MB for sn_all, so

if you use sn_all, there is an additional 32 MB, which also counts against

the 200 MB limit.

 In either of these circumstances, you may receive an out of memory error.

In that case, you can recompile your application with the -bmaxdata option

to set aside additional heap space, or use the MP_BUFFER_MEM

environment variable (or -buffer_mem command line flag) to specify a size

for the Early Arrival buffer that is smaller than the default of 64 MB.

 For more information about controlling the size of the Early Arrival buffer,

see “Using MP_BUFFER_MEM” on page 54.

6 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

Chapter 2. Executing parallel programs

POE is a simple and friendly environment designed to ease the transition from

serial to parallel application development and execution. POE lets you develop and

run parallel programs using many of the same methods and mechanisms as you

would for serial jobs. POE allows you to continue to use the standard UNIX and AIX

application development and execution techniques with which you are already

familiar. For example, you can redirect input and output, pipe the output of

programs into more or grep, write shell scripts to invoke parallel programs, and use

shell tools such as history. You do all these in just the same way you would for

serial programs. So while the concepts and approach to writing parallel programs

must necessarily be different, POE makes your working environment as familiar as

possible.

You can compile and execute your parallel C, C++, or Fortran programs on a

pSeries network cluster.

Executing parallel programs using POE

The first step in the life cycle of an application is actually writing the program.

These instructions assume that you have already written your parallel C, C++, or

Fortran program and, instead, describe the next step; compiling and executing it.

For information on writing parallel programs, refer to IBM Parallel Environment: MPI

Subroutine Reference, IBM Parallel Environment: MPI Programming Guide, IBM

Parallel Environment: Introduction, IBM Parallel System Support Programs:

Command and Technical Reference and the IBM RSCT: LAPI Programming Guide.

Note: If you are using POE for the first time, check that you have authorized

access. See IBM Parallel Environment: Installation for information on setting

up users.

In order to execute an MPI or LAPI parallel program, you need to:

1. Compile and link the program using shell scripts or make files which call the C,

C++, or Fortran compilers while linking in the Partition Manager interface and

message passing subroutines.

2. Copy your executable to the individual nodes in your partition if it is not

accessible to the remote nodes.

3. Set up your execution environment. This includes setting the number of tasks,

and determining the method of node allocation.

4. Load and execute the parallel program on the processor nodes of your partition.

You can:

v load a copy of the same executable on all nodes of your partition. This is the

normal procedure for SPMD programs.

v individually load the nodes of your partition with separate executables. This is

the normal procedure for MPMD programs.

v load and execute a series of SPMD or MPMD programs, in job step fashion,

on all nodes of your partition.

Step 1: Compile the program

As with a serial application, you must compile a parallel C, C++, or Fortran program

before you can run it. Instead of using the usual programming commands (cc, xlC,

xlf, cc_r, xlC_r, xlf_r), you use commands that not only compile your program, but

© Copyright IBM Corp. 1993, 2006 7

|

|
|
|

also link in the Partition Manager and message passing interface libraries. When

you later invoke the program, the subroutines in these libraries enable the home

node Partition Manager to communicate with the parallel tasks, and the tasks with

each other.

Parallel programs can also utilize functions to checkpoint and later restart a

program. For more information on checkpointing refer to “Checkpointing and

restarting programs” on page 45.

For each of the supported compilers (C, C++, Fortran, Fortran 90, and Fortran 95),

POE provides separate commands to compile and link application programs with

the parallel libraries, allowing the program to run in parallel. To compile a program

for use with POE, you use the mpcc_r (C compiler), mpCC_r (C++ compiler),

mpxlf_r (Fortran compiler), mpxlf90_r (Fortran 90 compiler), or mpxlf95_r (Fortran

95 compiler) command. These commands generate thread-aware code by linking in

the threaded version of MPI, including the threaded POE utility library.

The POE compiler scripts create dynamically bound executables, referencing the

appropriate MPI, LAPI, and threaded libraries, some of which are dynamically

loaded. As a result, it is not possible to create statically bound executables in PE

Version 4. PE Version 4 no longer supports the use of statically bound application

programs.

Previously, there were two versions of these commands, for non-threaded and

threaded programs. Only the threaded version of MPI is supported in PE Version 4.

Legacy POE scripts, such as mpcc, mpCC, and mpxlf, are now symbolic links to

mpcc_r, mpCC_r, and mpxlf_r.

These compiler commands are actually shell scripts which call the appropriate

compiler. You can use any of the cc_r, xlC_r, or xlf_r flags on these commands.

We suggest you allow the scripts to provide appropriate include paths for the PE

MPI include files rather than provide them explicitly.

Table 2 shows what to enter to compile a program, depending on the language in

which it is written. For more information on these commands, see Appendix A,

“Parallel Environment commands,” on page 85.

 Table 2. Compiling a program

To compile: ENTER

a C program mpcc_r program.c -o program

a C++ program mpCC_r program.C -o program

a Fortran program mpxlf_r program.f -o program

a Fortran 90 program mpxlf90_r program.f -o program

a Fortran 95 program mpxlf95_r program.f -o program

Notes:

1. Be sure to specify the -g flag when compiling a program for use with the parallel

debugger. The -g flag is a standard compiler flag that produces an object file

with symbol table references. These symbol table references are needed by the

debugger. For more information on the -g option, refer to its use on the cc

command as described in IBM AIX 5L Commands Reference.

8 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

2. If you will be collecting communication count (byte count) information using the

Performance Collection Tool (PCT), you must first do the following before

compiling the program:

v Install the PCT (the ppe.perf file set).

v Set the MP_BYTECOUNT environment variable. Setting MP_BYTECOUNT

ensures that your application will be linked with the appropriate profiling

library (MPI, LAPI, or both).

After you have installed the PCT and set MP_BYTECOUNT, compile the

program with the appropriate compiler script (mpcc_r, mpCC_r, mpclf_r,

mpxlf90_r, or mpxlf95_r).

Note that if you wish to collect byte count data for LAPI programs, you can use

the compiler scripts mentioned above as well as the standard nonparallel LAPI

compile scripts such as cc_r (C programs), CC_r (C++ programs), and xlf_r

(FORTRAN programs). However, you must specify the path to the LAPI profiling

library using the -L option (for example, -L /usr/lpp/ppe/perf/lib and using the -l

option to specify the LAPI profiling library name (for example, -l lapicount_r).

For more information about compiling LAPI programs, refer to IBM Reliable

Scalable Cluster Technology: LAPI Programming Guide.

For information about setting MP_BYTECOUNT, refer to Appendix A, “Parallel

Environment commands,” on page 85. For more information about using the

PCT, see IBM Parallel Environment: Operation and Use, Volume 2.

3. For 32-bit applications only, programs compiled for use with POE are limited to

eight (8) data segments. The -bmaxdata option cannot specify more than

0x80000000. The actual amount available may be less, depending on whether

shared memory or user space striping is being used by MPI and/or LAPI. See

“Considerations for data striping, failover and recovery with PE” on page 66 for

more information.

4. The POE compiler scripts will evaluate a dollar sign ($) in a file name as if it

were a shell variable, which may not produce the desired result in resolving the

file name to be compiled. If your program file names contain the dollar sign, you

will need to prevent the compiler scripts from evaluating it as a shell variable.

For example, if your file name is $foo.f, you need to invoke the compiler script

as:

mpxlf_r "\\\$foo.f"

or

mpxlf_r "*foo.f"

5. POE compile scripts utilize the -binitfini binder option. As a result, POE

programs have a priority default of zero. If other user applications are using the

initfini binder option, they should only specify a priority in the range of 1 to

2,147,483,647.

6. Beginning with PE 4.3, the default value of the MP_BUFFER_MEM environment

variable, which sets the size of the Early Arrival buffer for IP has been changed

from 2.8MB to 64MB. This is important to note because, by default, a 32-bit

application may have a limited amount of memory available for this buffer.

Applications may need to be compiled with -bmaxdata option to set aside more

heap space. For more information, see “PE Version 4 Release 3 migration

information” on page 4.

Step 2: Copy files to individual nodes

Note: You only need to perform this step if your executable, your data files, and (if

you plan to use pdbx) your source code files are not in a commonly

Chapter 2. Executing parallel programs 9

|
|
|
|
|
|
|

accessed, shared, or parallel file system. For more information on the

parallel debuggers, see IBM Parallel Environment: Operation and Use,

Volume 2.

If the program you are running is in a shared file system, the Partition Manager

loads a copy of your executable in each processor node in your partition when you

invoke a program. If your executable is in a private file system, however, you must

copy it to the nodes in your partition. If you plan to use the parallel debugger pdbx,

you must copy your source files to all nodes as well.

You can copy your executable to each node with the mcp command. mcp uses the

message passing facilities of the Parallel Environment to copy a file from a file

system on the home node to a remote node file system. For example, assume that

your executable program is on a mounted file system (/u/edgar/somedir/
myexecutable), and you want to make a private copy in /tmp on each node in

host.list.

ENTER

mcp /u/edgar/somedir/myexecutable /tmp/myexecutable -procs n

For more information on the mcp command, refer to “mcp” on page 86.

Note: If you load your executable from a mounted file system, you may experience

an initial delay while the program is being initialized on all nodes. You may

experience this delay even after the program begins executing, because

individual pages of the program are brought in on demand. This is

particularly apparent during initialization of a parallel program; since

individual nodes are synchronized, there are simultaneous demands on the

network file transfer system. You can minimize this delay by copying the

executable to a local file system on each node, using the mcp message

passing file copy program.

Step 3: Set up the execution environment

This step contains the following sections:

v “Step 3a: Set the MP_PROCS environment variable” on page 16

v “Step 3b: Create a host list file” on page 16

v “Step 3c: Set the MP_HOSTFILE environment variable” on page 21

v “Step 3d: Set the MP_RESD environment variable” on page 22

v “Step 3e: Set the MP_EUILIB environment variable” on page 23

v “Step 3f: Set the MP_EUIDEVICE environment variable” on page 24

v “Step 3g: Set the MP_MSG_API environment variable” on page 25

v “Step 3h: Set the MP_RMPOOL environment variable” on page 26

Before invoking your program, you need to set up your execution environment. The

POE environment variables are summarized in Appendix B, “POE Environment

variables and command line flags,” on page 141. Any of these environment

variables can be set at this time to later influence the execution of parallel

programs.

This step covers the environment variables that are most important to successfully

invoke a parallel program. When you invoke a parallel program, your home node

Partition Manager checks these environment variables to determine:

v the number of tasks in your program as specified by the MP_PROCS

environment variable.

10 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

v how to allocate processor nodes for these tasks. There are two basic methods of

node allocation – specific and nonspecific.

For specific node allocation, the Partition Manager reads an explicit list of nodes

contained in a host list file you create. If you do not have LoadLeveler, or if you

are using nodes that are not part of the LoadLeveler cluster, you must use this

method of node allocation.

For nonspecific node allocation, you give the Partition Manager the name or

number of a LoadLeveler pool. A pool name or number may also be provided in

a host list file. The Partition Manager then connects to LoadLeveler, which

allocates nodes from the specified pool(s) for you. For more information on

LoadLeveler and LoadLeveler pools, refer to the scenarios for allocating nodes

with LoadLeveler in “Considerations for using the high performance switch

interconnect” on page 62.

Note: The limits on the total number of tasks in a parallel job and the maximum

number of tasks on a node (operating system image) are listed in Table 3. If

two limits are listed, the most restrictive limit applies. The maximum number

of nodes for the pSeries HPS switch is 2048. The maximum number of

supported tasks is 8192.

 Table 3. Number of tasks in a parallel job and maximum number of tasks on a node.

Protocol Limit Switch/Adapter Total Task Limit Task per Node Limit

IP any 8192 No specific limit.

However, for

LoadLeveler, the task

per node limit is

limited by the number

of starter processes

configured for a

node.

US pSeries HPS with

one adapter

8192 64

US pSeries HPS with 2

adapters per network

8192 128

There are six separate environment variables that, collectively, determine how

nodes are allocated by the Partition Manager. The following description of these

environment variables assumes that you are not submitting a job using a

LoadLeveler job command file as described in “Submitting an interactive POE job

using a TWS LoadLeveler command file” on page 75. If you do intend to use a

LoadLeveler job command file, be aware that, in order to avoid conflicting allocation

specifications made via POE environment variables/command line flags,

LoadLeveler job command file statements, and POE host list file entries, certain

settings will be ignored or will cause errors. The following information, therefore,

assumes that you are not using a LoadLeveler job command file. Also keep in mind

that, while the following environment variables are the only ones you must set to

allocate nodes, there are many other environment variables you can set. These are

summarized in Appendix B, “POE Environment variables and command line flags,”

on page 141, and control such things as standard I/O handling and message

passing information. The environment variables for node allocation are:

MP_HOSTFILE

which specifies the name of a host list file to use for node allocation. If set

to an empty string (“ ”) or to the word “NULL”, this environment variable

specifies that no host list file should be used. If MP_HOSTFILE is not set,

Chapter 2. Executing parallel programs 11

|
|
|
|

|
|
|

POE looks for a file host.list in the current directory. You need to create a

host list file if you want specific node allocation.

MP_RESD

which specifies whether or not the Partition Manager should connect to

LoadLeveler to allocate nodes.

Note: When running POE from a workstation that is external to the

LoadLeveler cluster, the LoadL.so file set must be installed on the

external node (see Tivoli Workload Scheduler LoadLeveler: Using

and Administering and IBM Parallel Environment: Installation for

more information).

MP_EUILIB

which specifies the communication subsystem implementation to use –

either the IP communication subsystem implementation or the User Space

(US) communication subsystem implementation. The IP communication

subsystem uses Internet Protocol for communication among processor

nodes, while the User Space communication subsystem lets you drive a

clustered server’s high-speed interconnect switch directly from your parallel

tasks, without going through the kernel or operating system. For User

Space communication on a clustered server system, you must have the

high-speed interconnect switch feature.

MP_EUIDEVICE

which specifies the adapter set you want to use for communication among

processor nodes. The Partition Manager checks this if you are using the

communication subsystem implementation with LoadLeveler. If

MP_RESD=no, the value of MP_EUIDEVICE is ignored. For User Space,

the values of css0 and sn_single specify that windows are requested on

one common network. The values csss and sn_all specify that windows

are requested from each network in the system. The number of windows

being requested depends on the value of the MP_INSTANCES environment

variable (the default is one). In the case of csss and sn_all, the number of

windows being requested also depends on the number of networks in the

system.

MP_RMPOOL

which specifies the name or number of a LoadLeveler pool. The Partition

Manager only checks this if you are using LoadLeveler without a host list

file. You can use the llstatus command to return information about

LoadLeveler pools. To use llstatus on a workstation that is external to the

LoadLeveler system, the LoadL.so file set must be installed on the external

node. For more information, see Tivoli Workload Scheduler LoadLeveler:

Using and Administering and IBM Parallel Environment: Installation.

The remainder of this step consists of sub-steps describing how to set each of

these environment variables, and how to create a host list file. Depending on the

hardware and message passing library you are using, and the method of node

allocation you want, some of the sub-steps that follow may not apply to you. For

this reason, pay close attention to the task variant tables at the beginning of many

of the sub-steps. They will tell you whether or not you need to perform the sub-step.

For further clarification, the following tables summarize the procedure for

determining how nodes are allocated. The tables describe the possible methods of

node allocation available to you, to what each environment variable must be set,

and whether or not you need to create a host list file.

12 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|
|

As already stated, these instructions assume that you are not using a LoadLeveler

job command file and, therefore, the MP_LLFILE environment variable (or its

associated command line flag -llfile) is not set. To allocate nodes using a

LoadLeveler job command file, refer to “Submitting an interactive POE job using a

TWS LoadLeveler command file” on page 75 or the manual Tivoli Workload

Scheduler LoadLeveler: Using and Administering.

To make the procedure of setting up the execution environment easier and less

prone to error, you may eventually wish to create a shell script which automates

some of the environment variable settings. To allocate the nodes of a clustered

server that uses LoadLeveler, see Table 4 and Table 5.If you are using a network

cluster or a mixed system and want to allocate some nodes that are not part of the

LoadLeveler cluster, see Table 6 on page 14.

If you want to use the User Space communication subsystem library for

communication among parallel tasks, and...

 Table 4. Execution setup summary for User Space (for a clustered server with LoadLeveler)

You want specific node allocation:

You want nonspecific node allocation from a single

LoadLeveler pool:

A host list file is required. A host list file not required. If used, however, all entries

must specify the same LoadLeveler pool.

MP_HOSTFILE should be set to the name of your host

list file. If not set, the host list file is assumed to be

host.list in the current directory.

No host list file is required. If none is used,

MP_HOSTFILE should be set to an empty string (″″) or

the word ″NULL″.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the

value of MP_RESD is yes.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the

value of MP_RESD is yes.

MP_EUILIB should be set to us. The values of

MP_EUILIB are case-sensitive.

MP_EUILIB should be set to us. The values of

MP_EUILIB are case-sensitive.

MP_EUIDEVICE should be set to csss (the high

performance switch). css0,sn_all, sn_single.

MP_EUIDEVICE should be set to csss (the high

performance switch). css0,sn_all,sn_single.

MP_RMPOOL is ignored because you are using a host

list file.

if you are not using a host list file, MP_RMPOOL should

be set to the name or number of a LoadLeveler pool. If

you are using a host list file, MP_RMPOOL is ignored;

you must specify the pool in the host list file.

If you want to use the IP communication subsystem library for

communication among parallel tasks, and...

 Table 5. Execution setup summary for IP (for a clustered server with LoadLeveler)

You want specific node allocation:

You want nonspecific node allocation from a single

LoadLeveler pool:

A host list file is required. A host list file is not required. If used, however, all

entries must specify the same LoadLeveler pool.

MP_HOSTFILE Should be set to the name of your host

list file. If not set, the host list file is assumed to be

host.list in the current directory..

No host list file is required. If none is used,

MP_HOSTFILE should be set to an empty string (″″) or

the word ″NULL″.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the

value of MP_RESD is no.

MP_RESD should be set to yes. If set to an empty string

(″″), or if not set, the Partition Manager assumes the

value of MP_RESD is yes.

MP_EUILIB should be set to ip. The values of

MP_EUILIB are case-sensitive.

MP_EUILIB should be set to ip. The values of

MP_EUILIB are case-sensitive.

Chapter 2. Executing parallel programs 13

|
|

|
|

||

|
|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

||

|
|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

Table 5. Execution setup summary for IP (for a clustered server with LoadLeveler) (continued)

You want specific node allocation:

You want nonspecific node allocation from a single

LoadLeveler pool:

MP_EUIDEVICE should specify the adapter type. MP_EUIDEVICE should specify the adapter type.

MP_RMPOOL is ignored because you are using a host

list file.

if you are not using a host list file, MP_RMPOOL should

be set to the name or number of a LoadLeveler pool. If

you are using a host list file, MP_RMPOOL is ignored;

you must specify the pool in the host list file.

Note: This preceding table assumes that the MP_LLFILE environment variable is

not set, and the -llfile flag is not used. If the MP_LLFILE environment

variable (or its associated command line flag) is used, indicating that a

LoadLeveler job command file should participate in node allocation, be

aware that some of the environment variables shown in this table will be

ignored. The reason they will be ignored is to avoid conflicting allocation

specifications made via POE environment variables/command line flags,

POE host list file entries, and LoadLeveler job command file statements. For

more information on the POE environment variables that will be ignored

when a LoadLeveler job command file is used, refer to “Submitting an

interactive POE job using a TWS LoadLeveler command file” on page 75.

Table 6 summarizes the execution environment setup for a pSeries cluster or a

mixed system, whose additional nodes are not part of the LoadLeveler cluster. In

this scenario, a host list file must be used.

 Table 6. Execution environment setup summary (for a pSeries network cluster or a mixed system, whose additional

nodes are not part of the LoadLeveler cluster)

This environment variable... is set as follows

MP_HOSTFILE should be set to the name of a host list file. If not defined,

the host list file is assumed to be host.list in the current

directory.

MP_RESD should be set to no.

MP_EUILIB should be set to ip.

MP_RMPOOL is not used because you are using a host list file.

Table 7 shows how nodes are allocated depending on the value of the environment

variables discussed in this step. It is provided here for additional illustration. Refer

to it in situations when the environment variables are set in patterns other than

those suggested in Table 4 on page 13, Table 5 on page 13, and Table 6. When

reading Table 7, be aware that, if a LoadLeveler job command file is specified

(using the MP_LLFILE environment variable or the -llfile flag), the value of

MP_RESD will be yes.

 Table 7. Node allocation summary

If Then

The value of

MP_EUILIB is:

The value of

MP_RESD is:

Your Host List file

contains a list of:

The allocation

mode will be:

The

communication

subsystem

library

implementation

used will be:

The message

passing address

used will be:

14 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|
|
|

||

|
|
|
|
|
|
|

|
|
|

||

Table 7. Node allocation summary (continued)

If Then

ip - nodes Node_List IP Nodes

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

yes nodes LL_List IP MP_EUIDEVICE

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

no nodes Node_List IP Nodes

pools Error - -

NULL Error - -

us - nodes LL_List US N/A

pools LL_List US N/A

NULL LL US N/A

yes nodes LL_List US N/A

pools LL_List US N/A

NULL LL US N/A

no nodes Node_List IP

Nodes

- -

pools Error - -

NULL Error - -

- - nodes Node_List IP Nodes

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

yes nodes LL_List IP MP_EUIDEVICE

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

no nodes Node_List IP Nodes

pools Error - -

NULL Error - -

Table notes:

Node_List means that the host list file is used to create the partition.

LL_List means that the host list file is used to create the partition, but the

nodes are requested from LoadLeveler.

LL means that the partition is created by requesting nodes in

MP_RMPOOL from LoadLeveler.

Nodes indicates that the external IP address of the processor node is used

for communication.

MP_EUIDEVICE

indicates that the IP adapter address indicated by MP_EUIDEVICE

is used for communication.

Chapter 2. Executing parallel programs 15

|

Step 3a: Set the MP_PROCS environment variable

Before you execute a program, you need to set the size of the partition. To do this,

use the MP_PROCS environment variable or its associated command line flag

-procs, as shown in Table 8.

For example, say you want to specify the number of task processes as 6. You

could:

 Table 8. Example of setting the MP_PROCS environment variable or -procs command line flag

Set the MP_PROCS environment variable: Use the -procs flag when invoking the program:

ENTER

export MP_PROCS=6

ENTER

poe program -procs 6

If you do not set MP_PROCS, the default number of task processes is 1 unless you

have set the MP_RMPOOL environment variable (or -rmpool command line flag)

for nonspecific node allocation from a single LoadLeveler pool, and have set both

the MP_NODES and MP_TASKS_PER_NODE environment variables (or their

associated command line flags) to further specify how LoadLeveler should allocate

nodes within the pool. In such cases, if MP_PROCS is not set, the parallel job will

consist of MP_TASKS_PER_NODE multiplied by MP_NODES tasks. See “Step 3h:

Set the MP_RMPOOL environment variable” on page 26 for more details.

Step 3b: Create a host list file

You need to create a host list file if you are using a pSeries network cluster, or a

mixed system in which some nodes are not part of the LoadLeveler cluster.

A host list file specifies the processor nodes on which the individual tasks of your

program should run. When you invoke a parallel program, your Partition Manager

checks to see if you have specified a host list file. If you have, it reads the file to

allocate processor nodes.

The procedure for creating a host list file differs depending on whether you are

using a pSeries network cluster or a LoadLeveler cluster. If you are using a pSeries

network cluster, see “Creating a host list file to allocate nodes of a cluster without

LoadLeveler.” If you are using a LoadLeveler cluster, see “Creating a host list file to

allocate nodes with LoadLeveler” on page 17.

Creating a host list file to allocate nodes of a cluster without LoadLeveler: If

you are using a pSeries cluster, a host list file simply lists a series of host names –

one per line. These must be the names of remote nodes accessible from the home

node. Each line specifies where one task is to be run so when SMP nodes are to

run multiple tasks, the same node name can appear more than once. Lines

beginning with an exclamation point (!) or asterisk (*) are comments. The Partition

Manager ignores blank lines and comments. The host list file can list more names

than are required by the number of program tasks. The additional names are

ignored.

To understand how the Partition Manager uses a host list file to determine the

nodes on which your program should run, consider the following example host list

file:

! Host list file for allocating 6 tasks

* An asterisk may also be used to indicate a comment

16 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|

|
|

|
|
|
|
|

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

The Partition Manager ignores the first two lines because they are comments, and

the third line because it is blank. It then allocates host1_name to run task 0,

host2_name to run task 1, host3_name to run task 2, and so on. If any of the

processor nodes listed in the host list file are unavailable when you invoke your

program, the Partition Manager returns a message stating this and does not run

your program.

You can also have multiple tasks of a program share the same node by simply

listing the same node multiple times in your host list file. For example, say your host

list file contains the following:

host1_name

host2_name

host3_name

host1_name

host2_name

host3_name

Tasks 0 and 3 will run on host1_name, tasks 1 and 4 will run on host2_name, and

tasks 2 and 5 will run on host3_name.

Creating a host list file to allocate nodes with LoadLeveler: If you are using

LoadLeveler, you can use a host list file for either:

v nonspecific node allocation from one system pool only.

v specific node allocation. If you are using a mixed system whose additional nodes

are not part of the LoadLeveler cluster, you must use specific node allocation.

In either case, the host list file can contain a number of records – one per line. For

specific node allocation, each record indicates a processor node. For nonspecific

node allocation you can have one system pool only. Your host list file cannot

contain a mixture of node and pool requests, so you must use one method or the

other. The host list file can contain more records than required by the number of

program tasks. The additional records are ignored.

For specific node allocation: Each record is either a host name or IP adapter

address of a specific processor node of the system. If you are using a mixed

system and want to allocate nodes that are not part of the LoadLeveler cluster, you

must request them by host name. Lines beginning with an exclamation point (!) or

asterisk (*) are comments. The Partition Manager ignores blank lines and

comments.

To understand how the Partition Manager uses a host list file to determine the

system nodes on which your program should run, consider the following

representation of a host list file.

! Host list file for allocating 6 tasks

host1_name

host2_name

host3_name

9.117.8.53

9.117.8.53

9.117.8.53

Chapter 2. Executing parallel programs 17

The Partition Manager ignores the first line because it is a comment, and the

second because it is blank. It then allocates host1_name to run task 0, host2_name

to run task 1, host3_name to run task 2, and so on. The last three nodes are

requested by adapter IP address using dot decimal notation.

Note: If any of the processor nodes listed in the host list file are unavailable when

you invoke your program, the Partition Manager returns a message stating

this and does not run your program.

For nonspecific node allocation from a LoadLeveler pool: After installation of a

LoadLeveler cluster, your system administrator divides its processor nodes into a

number of pools. With LoadLeveler, each pool has an identifying pool name or

number. Using LoadLeveler for nonspecific node allocation, you need to supply the

appropriate pool name or number. When specifying pools in a host list file, each

entry must be for the same pool.

If you require information about LoadLeveler pools, use the command llstatus. To

use llstatus on a workstation that is external to the LoadLeveler cluster, the

LoadL.so file set must be installed on the external node (see Tivoli Workload

Scheduler LoadLeveler: Using and Administering for more information).

ENTER

llstatus -l (lower case L)

 LoadLeveler lists status information including the pools in the LoadLeveler

cluster.

 For more information on the llstatus command and LoadLeveler pools, see Tivoli

Workload Scheduler LoadLeveler: Using and Administering.

When specifying LoadLeveler pools in a host list file, each entry must refer to the

same pool (by name or number), and should be preceded by an at symbol (@).

Lines beginning with an exclamation point (!) and asterisk (*) are comments. The

Partition Manager ignores blank lines and comments.

To understand how the Partition Manager uses a host list file for nonspecific node

allocation, consider the following example host list file:

! Host list file for allocating 3 tasks with LoadLeveler

@6

@6

@6

The Partition Manager ignores the first line because it is a comment, and the

second line because it is blank. The at (@) symbols tell the Partition Manager that

these are pool requests. It connects to LoadLeveler to request three nodes from

pool 6.

Note: If there are insufficient nodes available in a requested pool when you invoke

your program, the Partition Manager returns a message stating this, and

does not run your program.

Specifying how a node’s resources are used: When requesting nodes using

LoadLeveler specific node allocation, you can optionally request how each node’s

resources – its adapters and CPU – should be used. You can specify:

v Whether the node’s adapter is to be dedicated or shared.

If the node’s adapter is to be dedicated, and if using:

18 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

– A single adapter, only a single program task can use it for the same protocol.

– Striping and multiple adapters, any window that is allocated on an adapter will

prevent other tasks from using windows on the same adapter.

If the node’s adapter is to be shared, a number of tasks of different jobs on that

node can use it. (see Table 9).

v Whether the node’s CPU usage should be unique or multiple. If unique, only

your program’s tasks can use the CPU. If multiple, your program may share the

node with other users.

If dedicated, using a single adapter, only a single program task can use it for the

same protocol. If dedicated, using multiple adapters, or if using striping, any window

that is allocated on an adapter will prevent other tasks from using windows on the

same adapter.

When using LoadLeveler for nonspecific node allocation, any usage specification in

the host list file will be ignored. Instead, you can request how nodes are used with

the MP_CPU_USE and/or MP_ADAPTER_USE environment variables (or their

associated command line options) or you can specify this information in a

LoadLeveler Job Command File.

Using the environment variables MP_ADAPTER_USE and MP_CPU_USE, or the

associated command line options (-adapter_use and -cpu_use) to make either or

both of these specifications will affect the resource usage for each node allocated

from the pool specified using MP_RMPOOL or -rmpool. For example, if you

wanted nodes from pool 5, and you wanted your program to have exclusive use of

both the adapter and CPU, the following command line could be used:

poe [program] -rmpool 5 -adapter_use[dedicated]

-cpu_use[unique] [more_poe_options]

Associated environment variables (MP_RMPOOL, MP_ADAPTER_USE,

MP_CPU_USE) could also be used to specify any or all of the options in this

example.

Note: You can also use a LoadLeveler job command file to specify how a node’s

resources are used. If you use a LoadLeveler job command file, the

MP_RMPOOL, MP_ADAPTER_USE, and MP_CPU_USE environment

variables will be validated but ignored. For more information about

LoadLeveler job command files, see Tivoli Workload Scheduler LoadLeveler:

Using and Administering.

Table 9 and Table 10 on page 20 illustrate how node resources are used. Table 9

shows the default settings for adapter and CPU use, while Table 10 on page 20

outlines how the two separate specifications determine how the allocated node’s

resources are used.

 Table 9. Adapter/CPU default settings

 Adapter CPU

If host list file contains nonspecific

pool requests:

Dedicated Unique

If host list file requests specific

nodes:

Shared (for User Space jobs, adapter

is dedicated)

Multiple

Chapter 2. Executing parallel programs 19

|
|

Table 9. Adapter/CPU default settings (continued)

 Adapter CPU

If host list file is not used: Dedicated (for IP jobs, adapter is

shared)

Unique (for IP jobs, CPU is multiple)

 Table 10. Adapter/CPU use under LoadLeveler

 If the Node’s CPU is “Unique”: If the Node’s CPU is “Multiple”:

If the adapter use is “Dedicated”: Intended for production runs of high

performance applications. Only the

tasks of that parallel job use the

adapter and CPU.

The adapter you specified with

MP_EUIDEVICE is dedicated to the

tasks of your parallel job. However,

you and other users still have access

to the CPU through another adapter.

Also, if you are using striping or

multiple adapters, any window that is

allocated on an adapter will prevent

other tasks from using windows on

that same adapter.

If the adapter use is “Shared”: Only your program tasks have access

to the node’s CPU, but other

program’s tasks can share the

adapter.

Both the adapter and CPU can be

used by a number of your program’s

tasks and other users.

Notes:

1. When using LoadLeveler, the User Space communication subsystem library

does not require dedicated use of the high performance switch on the node.

Adapter use will be defaulted, as in Table 9 on page 19, but shared usage may

be specified.

2. Adapter/CPU usage specification is only enforced for jobs using LoadLeveler for

node allocation.

Generating an output host list file: When running parallel programs using

LoadLeveler, you can generate an output host list file of the nodes that LoadLeveler

allocated. When you have LoadLeveler perform nonspecific node allocation, this

enables you to learn which nodes were allocated. This information is vital if you

want to perform some postmortem analysis or file cleanup on those nodes, or if you

want to rerun the program using the same nodes. To generate a host list file, set

the MP_SAVEHOSTFILE environment variable to a file name. You can specify this

using a relative or full path name. As with most POE environment variables, you

can temporarily override the value of MP_SAVEHOSTFILE using its associated

command line flag -savehostfile. Table 11 describes how to set the

MP_SAVEHOSTFILE environment variable and the -savehostfile command line

flag.

For example, to save LoadLeveler’s node allocation into a file called

/u/hinkle/myhosts, you could:

 Table 11. Example of setting the MP_SAVEHOSTFILE environment variable or -savehostfile command line flag

Set the MP_SAVEHOSTFILE environment variable:

Use the -savehostfile flag when invoking the

program:

ENTER

export MP_SAVEHOSTFILE=/u/hinkle/
myhosts

ENTER

poe program -savehostfile /u/hinkle/myhosts

20 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|
|
|

|

Each record in the output host list file will be the original nonspecific pool request.

Following each record will be comments indicating the specific node that was

allocated. The specific node is identified by:

v host name

v external IP address

v adapter IP address (which may be the same as the external IP address)

For example, say the input host list file contains the following records:

@mypool

@mypool

@mypool

The following is a representation of the output host list file.

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

Note: The name of your output host list file can be the same as your input host list

file. If a file of the same name already exists, it is overwritten by the output

host list file.

Step 3c: Set the MP_HOSTFILE environment variable

Use Table 12 to determine if you need to set the MP_HOSTFILE environment

variable.

 Table 12. When to set the MP_HOSTFILE environment variable

You need to set the MP_HOSTFILE environment

variable if:

You do not need to set the MP_HOSTFILE

environment variable if:

v you are using a host list file other than the default

./host.list

v you are requesting nonspecific node allocation without

a host list file.

If your host list file is the default ./host.list

The default host list file used by the Partition Manager to allocate nodes is called

host.list and is located in your current directory. You can specify a file other than

host.list by setting the MP_HOSTFILE environment variable to the name of a host

list file, or by using either the -hostfile or -hfile flag when invoking the program, as

shown in Table 13 on page 22. In either case, you can specify the file using its

relative or full path name.

For example, say you want to use the host list file myhosts located in the directory

/u/hinkle. You could:

Chapter 2. Executing parallel programs 21

|
|

|

|
|

Table 13. Example of setting the MP_HOSTFILE environment variable or -hostfile command line flag when using a

nondefault host list file

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER

export MP_HOSTFILE=/u/hinkle/myhosts

ENTER

poe program -hostfile /u/hinkle/myhosts

 or poe program -hfile /u/hinkle/myhosts

If you are using LoadLeveler for nonspecific node allocation from a single pool

specified by MP_RMPOOL, and a host list file exists in the current directory, you

must set MP_HOSTFILE to an empty string or to the word NULL, as shown in

Table 14. Otherwise the Partition Manager uses the host list file. You can either:

 Table 14. Setting the MP_HOSTFILE environment variable or -hostfile command line flag when requesting

nonspecific node allocation without a host list file

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER

export MP_HOSTFILE=

 or

 export MP_HOSTFILE=""

 or

 export MP_HOSTFILE=NULL

ENTER

poe program -hostfile ″″

 or poe program -hostfile NULL

Step 3d: Set the MP_RESD environment variable

To indicate whether or not LoadLeveler should be used to allocate nodes, you set

the MP_RESD environment variable to yes or no. As specified in “Step 3: Set up

the execution environment” on page 10, MP_RESD controls whether or not the

Partition Manager connects to LoadLeveler to allocate processor nodes.

If you are allocating nodes that are not part of a LoadLeveler cluster, MP_RESD

should be set to no. If MP_RESD is set to yes, only nodes within the LoadLeveler

cluster can be allocated.

If you are allocating nodes of a pSeries network cluster, you do not have

LoadLeveler and therefore should set MP_RESD to no. If you are using a mixed

system, you may set MP_RESD to yes. However, LoadLeveler only has knowledge

of nodes that are part of the LoadLeveler cluster. If the additional pSeries

processors are not part of the LoadLeveler cluster, you must also use a host list file

to allocate them, and cannot set MP_RESD to yes in that case.

As with most POE environment variables, you can temporarily override the value of

MP_RESD using its associated command line flag -resd. Table 15 on page 23

describes how to set the MP_RESD environment variable and the -resd command

line flag.

For example, to specify that you want the Partition Manager to connect LoadLeveler

to allocate nodes, you could:

22 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|
|

|
|

|
|
|

Table 15. Example of setting the MP_RESD environment variable or -resd command line flag

Set the MP_RESD environment variable: Use the -resd flag when invoking the program:

ENTER

export MP_RESD=yes

ENTER

poe program -resd yes

You can also set MP_RESD to an empty string. If set to an empty string, or if not

set, the default value of MP_RESD is interpreted as yes or no depending on the

context. Specifically, the value of MP_RESD will be determined by the value of

MP_EUILIB and whether or not you are using a host list file. Table 16 shows how

the context determines the value of MP_RESD.

 Table 16. How the value of MP_RESD is interpreted

MP_EUILIB setting and you are using a host list file:

and you are not using a host list

file:

If MP_EUILIB is set to ip, an empty

string, the word ″NULL″, or if not

set:

MP_RESD is interpreted as no by

default, unless:

v the host list file includes pool

requests, or

v the MP_LLFILE environment

variable is set (or the -llfile

command line flag is used).

MP_RESD is interpreted as yes by

default.

If MP_EUILIB is set to us: MP_RESD is interpreted as yes by

default.

MP_RESD is interpreted as yes by

default.

Note: When running POE from a workstation that is external to the LoadLeveler

cluster, the LoadL.so file set must be installed on the external node (see

Tivoli Workload Scheduler LoadLeveler: Using and Administering and IBM

Parallel Environment: Installation for more information).

Step 3e: Set the MP_EUILIB environment variable

During execution, the tasks of your program can communicate via calls to message

passing routines. The message passing routines in turn call communication

subsystem routines which enable the processor nodes to exchange the message

data. Before you invoke your program, you need to decide which communication

subsystem implementation you wish to use – the Internet Protocol (IP)

communication subsystem or the User Space communication subsystem.

v The IP communication subsystem implementation uses the Internet Protocol for

communication among processor nodes. If you do not have the high performance

switch feature, you must use the IP communication subsystem.

v The User Space communication subsystem implementation uses the User Space

protocol across the high performance communication adapter. It allows you to

drive the switch adapter directly from your parallel tasks. You can only use the

User Space communication subsystem when running on a system configured

with the high performance switch feature.

The MP_EUILIB environment variable, or its associated command line flag -euilib,

is used to indicate which communication subsystem implementation you are using.

POE needs to know which communication subsystem implementation to

dynamically link in as part of your executable when you invoke it. If you want the IP

communication subsystem, MP_EUILIB or -euilib should specify ip. If you want the

User Space communication subsystem, MP_EUILIB or -euilib should specify us. In

Chapter 2. Executing parallel programs 23

|

|

either case, the specification is case-sensitive. Table 17 describes how to set the

MP_EUILIB environment variable and the -euilib command line flag.

For example, say you want to dynamically link in the communication subsystem at

execution time. You could:

 Table 17. Example of setting the MP_EUILIB environment variable or -euilib command line flag

Set the MP_EUILIB environment variable: Use the -euilib flag when invoking the program:

ENTER

export MP_EUILIB=ip or us

ENTER

poe program -euilib ip or us

Note:

When you invoke a parallel program, your Partition Manager looks to the

directory /usr/lpp/ppe.poe/lib for the message passing interface and the

communication subsystem implementation. If you are running on a pSeries

network cluster, this is the actual location of the message passing interface

library. Consult your system administrator for the actual location of the

message passing library if necessary.

You can make POE look to a directory other than /usr/lpp/ppe.poe/lib by

setting the MP_EUILIBPATH environment variable or its associated

command line flag -euilibpath. This is useful when you get an emergency fix

(eFix) library and want to try it out before installing it. Copy the eFix library

into a directory and set MP_EUILIBPATH to point to it. Table 18 describes

how to set the MP_EUILIBPATH environment variable and the -euilibpath

command line flag.

For example, say the communication subsystem library implementations

were moved to /usr/altlib. To instruct the Partition Manager to look there,

you could:

 Table 18. Example of setting the MP_EUILIBPATH environment variable or -euilibpath command line flag

Set the MP_EUILIBPATH environment variable: Use the -euilibpath flag when invoking the program:

ENTER

export MP_EUILIBPATH=/usr/altlib

ENTER

poe program -euilibpath /usr/altlib

Step 3f: Set the MP_EUIDEVICE environment variable

Use Table 19 to determine if you need to set the MP_EUIDEVICE environment

variable.

 Table 19. When to set the MP_EUIDEVICE environment variable

You need to set the MP_EUIDEVICE environment

variable if:

You do not need to set the MP_EUIDEVICE

environment variable if:

you have set the MP_EUILIB environment variable to ip,

and are using LoadLeveler for node allocation.

you have set the MP_EUILIB environment variable to us.

The Partition Manager assumes that MP_EUIDEVICE is

csss – the high performance switch adapter.

If you are using LoadLeveler, you can specify which adapter set to use for message

passing for IP, using one of the adapters defined in the LoadLeveler administration

file. For US, you can select single (sn_single) or multiple (sn_all) adapters per task.

The MP_EUIDEVICE environment variable and its associated command line flag

24 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|

|
|
|
|
|
|

|
|
|

|

|
|

|

|
|
|

-euidevice are used to select an alternate adapter set for communication among

processor nodes. If neither MP_EUIDEVICE device nor the -euidevice flag is set

for IP, the communication subsystem library uses the external IP address of each

remote node. Table 20 shows the possible, case-sensitive, settings for

MP_EUIDEVICE.

 Table 20. Settings for MP_EUIDEVICE

Setting the MP_EUIDEVICE environment variable to: Selects:

Adapter device name An adapter device name or network type configured by

LoadLeveler.

sn_single One pSeries high performance window per task.

sn_all pSeries High Performance Switch to specify multiple

(striped) windows per task.

Table 21 describes how to set the MP_EUIDEVICE environment variable and the

-euidevice command line flag.

For example, to specify the high performance switch, you could:

 Table 21. Example of setting the MP_EUIDEVICE environment variable or -euidevice command line flag

Set the MP_EUIDEVICE environment variable: Use the -euidevice flag when invoking the program:

ENTER

export MP_EUIDEVICE=sn_single

ENTER

poe program -euidevice sn_single

Notes:

1. If you do not set the MP_EUIDEVICE environment variable, the default is the

adapter set used as the external network address for IP, and for User Space the

default is sn_all.

2. If using LoadLeveler for node allocation, the adapters must be configured in

LoadLeveler. See Tivoli Workload Scheduler LoadLeveler: Using and

Administering for more information.

3. Existing User Space applications that set MP_EUIDEVICE/-euidevice to

sn_single on systems using multiple adapters and multiple networks will not

benefit from the performance improvements provided by using the sn_all value.

In this case, you may want to change the MP_EUIDEVICE/-euidevice settings

for such applications. Note that User Space applications can set

MP_EUIDEVICE/-euidevice to sn_single on systems with multiple adapters and

a single network.

Step 3g: Set the MP_MSG_API environment variable

The MP_MSG_API environment variable, or its associated command line option, is

used to indicate to POE which message passing API is being used by a parallel job.

Use Table 22 to determine if you need to set the MP_MSG_API environment

variable.

 Table 22. When to set the MP_MSG_API environment variable

You need to set the MP_MSG_API environment

variable if:

You do not need to set the MP_MSG_API environment

variable if:

A parallel job is using LAPI alone or in conjunction with

MPI.

A parallel job is using MPI only.

Chapter 2. Executing parallel programs 25

|

|
|

|

|

||

|

|
|

|

|
|

Step 3h: Set the MP_RMPOOL environment variable

Use Table 23 to determine if you need to set the MP_RMPOOL environment

variable.

 Table 23. When to set the MP_RMPOOL environment variable

You need to set the MP_RMPOOL environment

variable if:

You do not need to set the MP_RMPOOL environment

variable if:

You are allocating nodes using LoadLeveler and want

nonspecific node allocation from a single pool.

You are allocating nodes using a host list file.

After installation of a LoadLeveler cluster, your system administrator divides its

processor nodes into a number of pools. Each pool has an identifying pool name or

number. When using LoadLeveler, and you want nonspecific node allocation from a

single pool, you need to set the MP_RMPOOL environment variable to the name or

number of that pool. If the value of the MP_RMPOOL environment variable is

numeric, that pool number must be configured in LoadLeveler. If the value of

MP_RMPOOL contains any nonnumeric characters, that pool name must be

configured as a feature in LoadLeveler.

If you need information about available LoadLeveler pools, use the command

llstatus. To use llstatus on a workstation that is external to the LoadLeveler

cluster, the LoadL.so file set must be installed on the external node (see Tivoli

Workload Scheduler LoadLeveler: Using and Administering and IBM Parallel

Environment: Installation for more information).

ENTER

llstatus -l (lower case L)

 LoadLeveler lists information about all LoadLeveler pools and/or features.

 For more information on the llstatus command and on LoadLeveler pools, refer to

Tivoli Workload Scheduler LoadLeveler: Using and Administering.

As with most POE environment variables, you can temporarily override the value of

MP_RMPOOL using its associated command line flag -rmpool. Table 24 describes

how to set the MP_RMPOOL environment variable and the -rmpool command line

flag.

For example, to specify pool 6 you could:

 Table 24. Example of setting the MP_RMPOOL environment variable or -rmpool command line flag

Set the MP_RMPOOL environment variable: Use the -rmpool flag when invoking the program:

ENTER

export MP_RMPOOL=6

ENTER

poe program -rmpool 6

For additional control over how LoadLeveler allocates nodes within the pool

specified by MP_RMPOOL or -rmpool, you can use the MP_NODES or

MP_TASKS_PER_NODE environment variables or their associated command line

options, as shown in the following table.

v The MP_NODES and MP_TASKS_PER_NODE settings are ignored unless

MP_RMPOOL is set and no host file is used. A restarted job may actually use

these previously ignored settings if MP_RMPOOL is used when restarting. See

the poerestart man page in Appendix A, “Parallel Environment commands” for

more information.

26 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|

|
|
|

|

|

v MP_NODES or -nodes specifies the number of physical nodes on which to run

the parallel tasks. You may use it alone or in conjunction with -tasks_per_node

and/or -procs, as described in Table 25, below.

v MP_TASKS_PER_NODE or -tasks_per_node specifies the number of tasks to

be run on each of the physical nodes. You may use it in conjunction with -nodes

and/or -procs, as described in Table 25 below, but may not use it alone.

v The maximum number of tasks is 4096.

 Table 25. LoadLeveler node allocation

MP_PROCS

set? MP_TASKS_PER_NODE set?

MP_NODES

set? Conditions and Results

Yes Yes Yes MP_TASKS_PER_NODE multiplied by

MP_NODES must equal MP_PROCS, otherwise

an error occurs.

Yes Yes No MP_TASKS_PER_NODE must divide evenly

into MP_PROCS, otherwise an error occurs.

Yes No Yes Tasks 0..m-1 are allocated to the first node,

tasks m..2m-1 are allocated to the second

node, and so on, where m is

MP_PROCS/MP_NODES rounded up.

Yes No No The parallel job will run with the indicated

number of MP_PROCS (p) on p nodes.

No Yes Yes The parallel job will consist of

MP_TASKS_PER_NODE multiplied by

MP_NODES tasks.

No Yes No An error occurs. MP_NODES or MP_PROCS

must be specified with

MP_TASKS_PER_NODE.

No No Yes One parallel task will be run on each of n

nodes.

No No No One parallel task will be run on one node.

Note: The examples in Table 25, above, use the environment variable setting to

illustrate each of the three options. The associated command line options

may also be used.

Step 4: Invoke the executable

Note:

In order to perform this step, you need to have a user account on, and be

able to remotely login to, each of the processor nodes. In addition, each user

account must be properly authorized based on the security methods

configured by the system administrator. Refer to “POE user authorization” on

page 50 for specific details.

The poe command enables you to load and execute programs on remote nodes.

You can use it to:

v load and execute an SPMD program onto all nodes of your partition. For more

information, see “Invoking an SPMD program” on page 29.

v individually load the nodes of your partition. This capability is intended for MPMD

programs. For more information, see “Invoking an MPMD program” on page 29.

Chapter 2. Executing parallel programs 27

|
|
|

v load and execute a series of SPMD or MPMD programs, in individual job steps,

on the same partition. For more information, see “Loading a series of programs

as job steps” on page 31.

v run nonparallel programs on remote nodes. For more information, see “Invoking

a nonparallel program on remote nodes” on page 34.

When you invoke poe, the Partition Manager allocates processor nodes for each

task and initializes the local environment. It then loads your program, and

reproduces your local environment, on each processor node. The Partition Manager

also passes the option list to each remote node. If your program is in a shared file

system, the Partition Manager loads a copy of it on each node. If your program is in

a private file system, you will have already manually copied your executable to the

nodes as described in “Step 2: Copy files to individual nodes” on page 9. When you

are using the message passing interface, the appropriate communication subsystem

library implementation (IP or US) is automatically loaded at this time.

Since the Partition Manager attempts to reproduce your local environment on each

remote node, your current directory is important. When you invoke poe, the

Partition Manager will, immediately before running your executable, issue the cd

command to your current working directory on each remote node. If you are in a

local directory that does not exist on remote nodes, you will get an error as the

Partition Manager attempts to change to that directory on remote nodes. Typically,

this will happen when you invoke poe from a directory under /tmp. We suggest that

you invoke poe from a file system that is mounted across the system. If it is

important that the current directory be under /tmp, make sure that directory exists

on all the remote nodes. If you are running in the C shell, see “Running programs

under the C shell” on page 77.

Note: The Parallel Environment opens several file descriptors before passing

control to the user. The Parallel Environment will not assign specific file

descriptors other than standard in, standard out, and standard error.

Before using the poe command, you can first specify which programming model

you are using by setting the MP_PGMMODEL environment variable to either spmd

or mpmd. As with most POE environment variables, you can temporarily override

the value of MP_PGMMODEL using its associated command line flag -pgmmodel.

Table 26 describes how to set the MP_PGMMODEL environment variable and the

-pgmmodel command line flag.

For example, if you want to run an MPMD program, you could:

 Table 26. Example of setting the MP_PGMMODEL environment variable or -pgmmodel command line flag

Set the MP_PGMMODEL environment variable: Use the -pgmmodel flag when invoking the program:

ENTER

export MP_PGMMODEL=mpmd

ENTER

poe program -pgmmodel mpmd

If you do not set the MP_PGMMODEL environment variable or -pgmmodel flag,

the default programming model is SPMD.

Note: If you load your executable from a mounted file system, you may experience

an initial delay while the program is being initialized on all nodes. You may

experience this delay even after the program begins executing, because

individual pages of the program are brought in on demand. This is

particularly apparent during initialization of a parallel application; since

28 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|

individual nodes are synchronized, there are simultaneous demands on the

network file transfer system. You can minimize this delay by copying the

executable to a local file system on each node, using the mcp command.

Invoking an SPMD program

If you have an SPMD program, you want to load the same executable for each task

on all nodes of your partition. To do this, follow the poe command with the program

name and any options. The options can be program options or any of the POE

command line flags shown in Appendix B, “POE Environment variables and

command line flags,” on page 141. You can also invoke an SPMD program by

entering the program name and any options:

ENTER

poe program [options]

 or

 program [options]

You can also enter poe without a program name:

ENTER

poe [options]

 Once your partition is established, a prompt appears.

ENTER

the name of the program you want to load. You can follow the program

name with any program options or a subset of the POE flags.

Note: For National Language Support, POE displays messages located in an

externalized message catalog. POE checks the LANG and NLSPATH

environment variables, and if either is not set, it will set up the following

defaults:

v LANG=C

v NLSPATH=/usr/lib/nls/msg/%L/%N

For more information about the message catalog, see “National language

support (NLS)” on page x.

Invoking an MPMD program

Note: You must set the MP_PGMMODEL environment variable or -pgmmodel flag

to invoke an MPMD program.

With an SPMD application, the name of the same executable is sent to, and runs

as each task on all of the processor nodes of your partition. If you are invoking an

MPMD application, you are dealing with more than one program and need to

individually specify the executable to be run for each task of your partition.

For example, say you have two programs – master and workers – designed to run

together and communicate via calls to message passing subroutines. The program

master is designed to run as one task, perhaps task zero. The workers program is

designed to run as separate tasks on any number of other nodes, and each task

knows it is to take direction from task zero. The master program will coordinate and

synchronize the execution of all the worker tasks. Neither program can run without

the other, as master only does sends and the workers tasks only do receives.

You can establish a partition and load each node individually using:

Chapter 2. Executing parallel programs 29

v standard input (from the keyboard or redirected)

v a POE commands file

Loading nodes individually from standard input: To establish a partition and

load each node individually using STDIN:

ENTER

poe [options]

 The Partition Manager allocates the processor nodes of your partition. Once

your partition is established, a prompt containing both the logical task

identifier 0 and the actual host name to which it maps, appears.

ENTER

the name of the program you want to load on task 0. You can follow the

program name with any program options or a subset of the POE flags.

 A prompt for the next task number in the partition displays.

ENTER

the name of the program you want to load as each task, as you are

prompted.

 When you have specified the program to run as the last task of your

partition, the message “Partition loaded...” displays and execution begins.

For additional illustration, the following shows the command prompts that would

appear, as well as the program names you would enter, to load the example master

and workers programs. This example assumes that the MP_PROCS environment

variable is set to 5, and that you wish to run 2 worker tasks per node, and the

master on a node by itself. Your host list file would list host1_name once, but

host2_name and host3_name twice each.

% poe

0:host1_name> master [options]

1:host2_name> workers [options]

2:host2_name> workers [options]

3:host3_name> workers [options]

4:host3_name> workers [options]

Partition loaded...

Note: You can use the following POE command line flags on individual program

names, but not those that are used to set up the partition.

v -infolevel or -ilevel

Loading nodes individually using a POE commands file: The MP_CMDFILE

environment variable, and its associated command line flag -cmdfile, let you

specify the name of a POE commands file. You can use such a file when

individually loading a partition – thus freeing STDIN. The POE commands file

simply lists the individual programs you want to load and run on the nodes of your

partition. The programs are loaded in task order. For example, say you have a

typical master/workers MPMD program that you want to run as 5 tasks. Your POE

commands file would contain:

30 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

master [options]

workers [options]

workers [options]

workers [options]

workers [options]

Once you have created a POE commands file, you can specify it using a relative or

full path name on the MP_CMDFILE environment variable or -cmdfile flag. Table 27

describes how to set the MP_CMDFILE environment variable and the -cmdfile

command line flag.

For example, if your POE commands file is /u/hinkle/mpmdprog, you could:

 Table 27. Example of setting the MP_CMDFILE environment variable or -cmdfile command line flag

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER

export MP_CMDFILE=/u/hinkle/mpmdprog

ENTER

poe -cmdfile /u/hinkle/mpmdprog

Once you have set the MP_CMDFILE environment variable to the name of the POE

commands file, you can individually load the nodes of your partition. To do this:

ENTER

poe [options]

 The Partition Manager allocates the processor nodes of your partition. The

programs listed in your POE commands file are run on the nodes of your

partition.

Loading a series of programs as job steps

By default, the Partition Manager releases your partition when your program

completes its run. However, you can set the environment variable MP_NEWJOB, or

its associated command line flag -newjob, to specify that the Partition Manager

should maintain your partition for multiple job steps. Table 28 on page 32 describes

how to set the MP_SAVEHOSTFILE environment variable and the -savehostfile

command line flag.

For example, say you have three separate SPMD programs. The first one sets up a

particular computation by adding some files to /tmp on each of the processor nodes

on the partition. The second program does the actual computation. The third

program does some postmortem analysis and file cleanup. These three parallel

programs must run as job steps on the same processor nodes in order to work

correctly. While specific node allocation using a host list file might work, the

requested nodes might not be available when you invoke each program. The better

solution is to instruct the Partition Manager to maintain your partition after execution

of each program completes. You can then read multiple job steps from:

v standard input

v a POE commands file using the MP_CMDFILE environment variable.

In either case, you must first specify that you want the Partition Manager to

maintain your partition for multiple job steps. To do this, you could:

Chapter 2. Executing parallel programs 31

|
|
|

|

|
|
|

Table 28. Example of setting the MP_NEWJOB environment variable or -newjob command line flag

Set the MP_NEWJOB environment variable: Use the -newjob flag on the poe command:

ENTER

export MP_NEWJOB=yes

ENTER

poe -newjob yes

Notes:

1. You can only load a series of programs as job steps using the poe command.

You cannot do this with the pdbx parallel debugger command.

2. poe is its own shell. Whether successive steps run after a step completes is a

function of the exit code, as described in IBM Parallel Environment: MPI

Programming Guide

Reading job steps from standard input: Say you want to run three SPMD

programs – setup, computation, and cleanup – as job steps on the same partition.

Assuming STDIN is keyboard entry, MP_PGMMODEL is set to spmd, and

MP_NEWJOB is set to yes, you would:

ENTER

poe [poe-options]

 The Partition Manager allocates the processor nodes of your partition, and

the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

setup [program-options]

 The program setup executes on all nodes of your partition. When execution

completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

computation [program-options]

 The program computation executes on all nodes of your partition. When

execution completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

cleanup [program-options]

 The program cleanup executes on all nodes of your partition. When

execution completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

quit

 or

 <Ctrl-d>

 The Partition Manager releases the nodes of your partition.

Notes:

1. You can also run a series of MPMD programs in job step fashion from STDIN. If

MP_PGMMODEL is set to mpmd, the Partition Manager will, after each step

completes, prompt you to individually reload the partition as described in

“Loading nodes individually from standard input” on page 30.

32 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

2. When MP_NEWJOB is yes, the Partition Manager, by default, looks to STDIN

for job steps. However, if the environment variable MP_CMDFILE is set to the

name of a POE commands file as described in “Reading job steps from a POE

commands file,” the Partition Manger will look to the commands file instead. To

ensure that job steps are read from STDIN, check that the MP_CMDFILE

environment variable is unspecified.

Multi-step STDIN for newjob mode: POE’s STDIN processing model allows

redirected STDIN to be passed to all steps of a newjob sequence, when the

redirection is from a file. If redirection is from a pipe, POE does not distribute the

input to each step, only to the first step.

Reading job steps from a POE commands file: The MP_CMDFILE environment

variable, and its associated command line flag -cmdfile, lets you specify the name

of a POE commands file. If MP_NEWJOB is yes, you can have the Partition

Manager read job steps from a POE commands file. The commands file in this case

simply lists the programs you want to run as job steps. For example, say you want

to run the three SPMD programs setup, computation, and cleanup as job steps on

the same partition. Your POE commands file would contain the following three lines:

setup [program-options]

computation [program-options]

cleanup [program-options]

Program-options represent the actual values you need to specify.

If you are loading a series of MPMD programs, the POE commands file is also

responsible for individually loading the partition. For example, say you had three

master/worker MPMD job steps that you wanted to run as 4 tasks on the same

partition. The following is a representation of what your POE commands file would

contain. Options represent the actual values you need to specify.

master1 [options]

workers1 [options]

workers1 [options]

workers1 [options]

master2 [options]

workers2 [options]

workers2 [options]

workers2 [options]

master3 [options]

workers3 [options]

workers3 [options]

workers3 [options]

While you could also redirect STDIN to read job steps from a file, a POE

commands file gives you more flexibility by not tying up STDIN. You can specify a

POE commands file using its relative or full path name.

Chapter 2. Executing parallel programs 33

Table 29 provides an example of specifying a POE commands file. Say your POE

commands file is called /u/hinkle/jobsteps. To specify that the Partition Manager

should read job steps from this file rather than STDIN, you could:

 Table 29. Example of specifying a POE commands file from which the Partition Manager should read job steps

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER

export MP_CMDFILE=/u/hinkle/jobsteps

ENTER

poe -cmdfile /u/hinkle/jobsteps

Once MP_NEWJOB is set to yes, and MP_CMDFILE is set to the name of your

POE commands file, you would:

ENTER

poe [poe-options]

 The Partition Manager allocates the processor nodes of your partition, and

reads job steps from your POE commands file. The Partition Manager does

not release your partition until it reaches the end of your commands file.

Invoking a nonparallel program on remote nodes

You can also use POE to run nonparallel programs on the remote nodes of your

partition. Any executable (binary file, shell script, UNIX utility) is suitable, and it does

not need to have been compiled with mpcc_r, mpCC_r, or mpxlf_r. For example, if

you wanted to check the process status (using the AIX command ps) for all remote

nodes in your partition, you would:

ENTER

poe ps

 The process status for each remote node is written to standard out

(STDOUT) at your home node. How STDOUT from all the remote nodes is

handled at your home node depends on the output mode. See “Managing

standard output (STDOUT)” on page 40 for more information.

Controlling program execution

There are a number of additional POE environment variables for monitoring and

controlling program execution, including:

v MP_EUIDEVELOP environment variable to specify that you want to run your

program in message passing develop mode. In this mode, more detailed

checking of your program is performed.

v MP_RETRY environment variable to make POE wait for processor nodes to

become available.

v MP_RETRYCOUNT environment variable to specify the number of times the

Partition Manager should request nodes before returning.

v MP_NOARGLIST and MP_FENCE environment variable to make POE ignore

arguments.

v MP_STDINMODE environment variable to manage standard input.

v MP_STDOUTMODE environment variable to manage standard output.

v MP_LABELIO environment variable to label message output with task identifiers.

v MP_INFOLEVEL environment variable to specify the level of messages you want

reported to standard error.

v MP_PMDLOG environment variable to generate a diagnostic log on remote

nodes.

34 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|

|
|

v MP_IONODEFILE environment variable to specify an I/O node file that indicates

which nodes should participate in parallel I/O.

v MP_CKPTFILE environment variable to define the base name of the checkpoint

file when checkpointing a program. See “Checkpointing and restarting programs”

on page 45 for more information.

v MP_CKPTDIR environment variable to define the directory where the checkpoint

file will reside when checkpointing a program. See “Checkpointing and restarting

programs” on page 45 for more information.

v MP_TASK_AFFINITY environment variable to attach each task of a parallel job

to one of the system resource sets (rsets) at the Multi-chip Module (MCM) level.

See “Managing task affinity on large SMP nodes” on page 48 for more

information.

For a complete listing of all POE environment variables, see Appendix B, “POE

Environment variables and command line flags,” on page 141.

Specifying develop mode

You can run programs in one of two modes – develop mode or run mode. In

develop mode, intended for developing applications, the message passing interface

performs more detailed checking during execution. Because of the additional

checking it performs, develop mode can significantly slow program performance. In

run mode, intended for completed applications, only minimal checking is done.

While run mode is the default, you can use the MP_EUIDEVELOP environment

variable to specify message passing develop mode.

As with most POE environment variables, MP_EUIDEVELOP has an associated

command line flag -euidevelop. Table 30 describes how to set the

MP_EUIDEVELOP environment variable and the -euidevelop command line flag.

For example, to specify MPI develop mode, you could:

 Table 30. Example of setting the MP_EUIDEVELOP environment variable or -euidevelop command line flag

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER

export MP_EUIDEVELOP=yes

ENTER

poe program -euidevelop yes

You could also specify debug develop mode by setting MP_EUIDEVELOP to deb.

To later go back to run mode, set MP_EUIDEVELOP to no.

To further limit parameter checking, set MP_EUIDEVELOP to min, for minimum.

Programs with errors may fail in unpredictable ways.

Making POE wait for processor nodes

If you are using Loadleveler, and there are not enough available nodes to run your

program, the Partition Manager, by default, returns immediately with an error. Your

program does not run. Using the MP_RETRY and MP_RETRYCOUNT environment

variables, however, you can instruct the Partition Manager to repeat the node

request a set number of times at set intervals. Each time the Partition Manager

repeats the node request, it displays the following message:

Retry allocation press control-C to terminate

Chapter 2. Executing parallel programs 35

|
|

|

|

The MP_RETRY environment variable, and its associated command line flag -retry,

specifies the interval (in seconds) to wait before repeating the node request. The

MP_RETRYCOUNT environment variable, and its associated command line flag

-retrycount, specifies the number of times the Partition Manager should make the

request before returning. Table 31 describes how to set the MP_RETRY and

MP_RETRYCOUNT environment variables and the -retry and -retrycount

command line flags.

For example, if you wanted to retry the node request five times at five minute (300

second) intervals, you could:

 Table 31. Example of setting the MP_RETRY and MP_RETRYCOUNT environment variables or -retry and -retrycount

command line flags

Set the MP_RETRY and MP_RETRYCOUNT

environment variables:

Use the -retry and -retrycount flags when invoking

the program:

ENTER

export MP_RETRY=300

 export MP_RETRYCOUNT=5

ENTER

poe program -retry 300 -retrycount 5

Note: If the MP_RETRYCOUNT environment variable or the -retrycount command

line flag is used, the MP_RETRY environment variable or the -retry

command line flag must be set to at least one second.

If MP_RETRY or -retry is set to the character string wait, instead of a number, no

retries are attempted by POE, and the job remains enqueued in LoadLeveler until

LoadLeveler either schedules or cancels the job. wait is not case sensitive.

Making POE ignore arguments

When you invoke a parallel executable, you can specify an argument list consisting

of a number of program options and POE command line flags. The argument list is

parsed by POE – the POE command line flags are removed and the remainder of

the list is passed on to the program. If any of your program arguments are identical

to POE command line flags, however, this can cause problems. For example, say

you have a program that takes the argument -retry. You invoke the program with

the -retry option, but it does not execute correctly. This is because there is also a

POE command line flag -retry. POE parses the argument list and so the -retry

option is never passed on to your program. There are two ways to correct this sort

of problem. You can:

v make POE ignore the entire argument list using the MP_NOARGLIST

environment variable.

v make POE ignore a portion of the argument list using the MP_FENCE

environment variable.

Making POE ignore the entire argument list

When you invoke a parallel executable, POE, by default, parses the argument list

and removes all POE command line flags before passing the rest of the list on to

the program. Using the environment variable MP_NOARGLIST, you can prevent

POE from parsing the argument list. To do this:

ENTER

export MP_NOARGLIST=yes

When the MP_NOARGLIST environment variable is set to yes, POE does not

examine the argument list at all. It simply passes the entire list on to the program.

36 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|
|

For this reason, you can not use any POE command line flags, but must use the

POE environment variables exclusively. While most POE environment variables

have associated command line flags, MP_NOARGLIST, for obvious reasons, does

not. To specify that POE should again examine argument lists, either set

MP_NOARGLIST to no, or unset it.

ENTER

export MP_NOARGLIST=no

 or

 unset MP_NOARGLIST

Making POE ignore a portion of the argument list

When you invoke a parallel executable, POE, by default, parses the entire

argument list and removes all POE command line flags before passing the rest of

the list on to the program. You can use a fence, however, to prevent POE from

parsing the remainder of the argument list. A fence is simply a character string you

define using the MP_FENCE environment variable. Once defined, you can use the

fence to separate those arguments you want parsed by POE from those you do not.

For example, say you have a program that takes the argument -retry. Because

there is also a POE command line flag -retry, you need to put this argument after a

fence. To do this, you could:

ENTER

export MP_FENCE=Q

 poe program -procs 26 -infolevel 2 Q -retry RGB

While this example defines Q as the fence, keep in mind that the fence can be any

character string. Any arguments placed after the fence are passed by POE,

unexamined, to the program. While most POE environment variables have

associated command line flags, MP_FENCE does not.

POE argument limits

The maximum length for POE program arguments is 24,576 bytes. This is a fixed

limit and cannot be changed. If this limit is exceeded, an error message will be

displayed and POE will terminate. The length of the remote program arguments that

can be passed on POE’s command line is 24,576 bytes minus the number of bytes

that are used for POE arguments.

Managing standard input, output, and error

POE lets you control standard input (STDIN), standard output (STDOUT), and

standard error (STDERR) in several ways. You can continue using the traditional

I/O manipulation techniques such as redirection and piping, and can also:

v determine whether a single task or all parallel tasks should receive data from

STDIN.

v determine whether a single task or all parallel tasks should write to STDOUT. If

all tasks are writing to STDOUT, you can further define whether or not the

messages are ordered by task id.

v specify the level of messages that will be reported to STDERR during program

execution.

v specify that messages to STDOUT and STDERR should be labeled by task id.

Managing standard input (STDIN)

STDIN is the primary source of data going into a command. Usually, STDIN refers

to keyboard input. If you use redirection or piping, however, STDIN could refer to a

Chapter 2. Executing parallel programs 37

file or the output from another command. How you manage STDIN for a parallel

application depends on whether or not its parallel tasks require the same input data.

Using the environment variable MP_STDINMODE or the command line flag

-stdinmode, you can specify that:

v all tasks should receive the same input data from STDIN. This is multiple input

mode.

v STDIN should be sent to a single task of your partition. This is single input mode.

v no task should receive input data from STDIN.

Multiple input mode: Setting MP_STDINMODE to all indicates that all tasks

should receive the same input data from STDIN. The home node Partition Manager

sends STDIN to each task as it is read.

Table 32 describes how to specify multiple input mode with the MP_STDINMODE

environment variable and the -stdinmode command line flag.

To specify multiple input mode, so all tasks receive the same input data from

STDIN, you could:

 Table 32. Example of specifying multiple input mode with the MP_STDINMODE environment variable or -stdinmode

command line flag

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER

export MP_STDINMODE=all

ENTER

poe program -stdinmode all

Note: If you do not set the MP_STDINMODE environment variable or use the

-stdinmode command line flag, multiple input mode is the default.

Single input mode: There are times when you only want a single task to read

from STDIN. To do this, you set MP_STDINMODE to the appropriate task id. For

example, say you have an MPMD application consisting of two programs – master

and workers. The program master is designed to run as a single task on one

processor node. The workers program is designed to run as separate tasks on any

number of other nodes. The master program handles all I/O, so only its task needs

to read STDIN.

Table 33 describes how to specify multiple input mode with the MP_STDINMODE

environment variable and the -stdinmode command line flag.

If master is running as task 0, you need to specify that only task 0 should receive

STDIN. To do this, you could:

 Table 33. Example of specifying single input mode with the MP_STDINMODE environment variable or -stdinmode

command line flag

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER

export MP_STDINMODE=0

ENTER

poe program -stdinmode 0

Using MP_HOLD_STDIN:

38 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|
|

|
|

|
|

Note

Earlier versions of Parallel Environment required the use of the

MP_HOLD_STDIN environment variable in certain cases when redirected

STDIN was used. The Parallel Environment components have now been

modified to control the STDIN flow internally, so the use of this environment

variable is no longer required, and will have no effect on STDIN handling.

Using redirected STDIN:

Note: Wherever the following description refers to a POE environment variable

(starting with MP_), the use of the associated command line option produces

the same effect.

A POE process can use its STDIN in two ways. First, if the program name is not

supplied on the command line and no command file (MP_CMDFILE) is specified,

POE uses STDIN to resolve the names of the programs to be run as the remote

tasks. Second, any remaining STDIN is then distributed to the remote tasks as

indicated by the MP_STDINMODE setting. In this dual STDIN model, redirected

STDIN can then pose two problems:

1. If using job steps (MP_NEWJOB=yes), the remaining STDIN is always

consumed by the remote tasks during the first job step.

2. If POE attempts program name resolution on the redirected STDIN, program

behavior can vary when using job steps, depending on the type of redirection

used and the size of the redirected STDIN.

The first problem is addressed in POE by performing a rewind of STDIN between

job steps (only if STDIN is redirected from a file, for reasons beyond the scope of

these instructions). The second problem is addressed by providing an additional

setting for MP_STDINMODE of “none”, which tells POE to only use STDIN for

program name resolution. As far as STDIN is concerned, “none” ever gets delivered

to the remote tasks. This provides an additional method of reliably specifying the

program name to POE, by redirecting STDIN from a file or pipe, or by using the

shell’s here-document syntax in conjunction with the “none” setting. If

MP_STDINMODE is not set to “none” when POE attempts program name resolution

on redirected STDIN, program behavior is undefined.

The following scenarios describe in more detail the effects of using (or not using) an

MP_STDINMODE of “none” when redirecting (or not redirecting) STDIN, as shown

in the example:

 Is STDIN Redirected?

 Yes No

 Yes A B

Is MP_STDINMODE set to none?

 No C D

Scenario A: POE will use the redirected STDIN for program name resolution, only

if no program name is supplied on the command line (MP_CMDFILE is ignored

Chapter 2. Executing parallel programs 39

when MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No

rewind of STDIN is performed when MP_STDINMODE=none.

Scenario B: POE will use the keyboard STDIN for program name resolution, only if

no program name is supplied on the command line (MP_CMDFILE is ignored when

MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No rewind

of STDIN is performed when MP_STDINMODE=none (also, STDIN is not from a

file).

Scenario C: POE will use the redirected STDIN for program name resolution, if

required, and will distribute remaining STDIN to the remote tasks. If STDIN is

intended to be used for program name resolution, program behavior is undefined in

this case, since POE was not informed of this by setting STDINMODE to none (see

Problem 2 above). If STDIN is redirected from a file, POE will rewind STDIN

between each job step. For large amounts of redirected STDIN (more than 4k

bytes), programs should consider bypassing the home node POE binary as

described in the Standard I/O requires special attention section in IBM Parallel

Environment: MPI Programming Guide.

Scenario D: POE will use the keyboard STDIN for program name resolution, if

required. Any remaining STDIN is distributed to the remote tasks. No rewind of

STDIN is performed since STDIN is not from a file.

Managing standard output (STDOUT)

STDOUT is where the data coming from the command will eventually go. Usually,

STDOUT refers to the display. If you use redirection or piping, however, STDOUT

could refer to a file or another command. How you manage STDOUT for a parallel

application depends on whether you want output data from one task or all tasks. If

all tasks are writing to STDOUT, you can also specify whether or not output is

ordered by task id. Using the environment variable MP_STDOUTMODE, you can

specify that:

v all tasks should write output data to STDOUT asynchronously. This is unordered

output mode.

v output data from each parallel task should be written to its own buffer, and later

all buffers should be flushed, in task order, to STDOUT. This is ordered output

mode.

v a single task of your partition should write to STDOUT. This is single output

mode.

Unordered output mode: Setting MP_STDOUTMODE to unordered specifies that

all tasks should write output data to STDOUT asynchronously.

Table 34 describes how to specify unordered output mode by setting the

MP_STDOUTMODE environment variable and the -stdoutmode command line flag.

To specify unordered output mode, you could:

 Table 34. Example of specifying unordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=unordered

ENTER

poe program -stdoutmode unordered

40 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|
|

Notes:

1. If you do not set the MP_STDOUTMODE environment variable or use the

-stdoutmode command line flag, unordered output mode is the default.

2. If you are using unordered output mode, you will probably want the messages

labeled by task id. Otherwise it will be difficult to know which task sent which

message. See “Labeling message output” on page 42 for more information.

3. You can also specify unordered output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to IBM

Parallel Environment: MPI Subroutine Reference for more information.

4. Although the above environment variable and Parallel Utility Function are both

described as “MP_STDOUTMODE”, they are each used independently for their

specific purposes.

Ordered output mode: Setting MP_STDOUTMODE to ordered specifies ordered

output mode. In this mode, each task writes output data to its own buffer. Later, all

the task buffers are flushed, in order of task id, to STDOUT. The buffers are flushed

when:

v any one of the individual task buffers fills

v execution of the program completes.

v all tasks explicitly flush the buffers by calling the MP_FLUSH or mpc_flush

Parallel Utility Function.

v tasks change output mode using calls to Parallel Utility Functions. For more

information on Parallel Utility Functions, refer to IBM Parallel Environment: MPI

Subroutine Reference

Note: When running the parallel application under pdbx with MP_STDOUTMODE

set to ordered, there will be a difference in the ordering from when the

application is run directly under poe. The buffer size available for the

application’s STDOUT is smaller because pdbx uses some of the buffer, so

the task buffers fill up more often.

Table 35 describes how to specify ordered output mode by setting the

MP_STDOUTMODE environment variable and the -stdoutmode command line flag.

To specify ordered output mode, you could:

 Table 35. Example of specifying ordered output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=ordered

ENTER

poe program -stdoutmode ordered

Note: You can also specify ordered output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to

IBM Parallel Environment: MPI Subroutine Reference for more information.

Single output mode: You can specify that only one task should write its output

data to STDOUT. To do this, you set MP_STDOUTMODE to the appropriate task id.

For example, say you have an SPMD application in which all the parallel tasks are

sending the exact same output messages. For easier readability, you would prefer

output from only one task – task 0.

Chapter 2. Executing parallel programs 41

|
|

|
|

Table 36 describes how to single output mode by setting the MP_STDOUTMODE

environment variable and the -stdoutmode command line flag.

To specify this, you could:

 Table 36. Example of specifying single output mode with the MP_STDOUTMODE environment variable or

-stdoutmode command line flag

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=0

ENTER

poe program -stdoutmode 0

Note: You can also specify single output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to

IBM Parallel Environment: MPI Subroutine Reference for more information.

Labeling message output

You can set the environment variable MP_LABELIO, or use the -labelio flag when

invoking a program, so that output from the parallel tasks of your program are

labeled by task id. While not necessary when output is being generated in single

mode, this ability can be useful in ordered and unordered modes. For example, say

the output mode is unordered. You are executing a program and receiving

asynchronous output messages from all the tasks. This output is not labeled, so

you do not know which task has sent which message. It would be clearer if the

unordered output was labeled. For example:

 7: Hello World

 0: Hello World

 3: Hello World

 23: Hello World

 14: Hello World

 9: Hello World

Table 37 describes how to set the MP_LABELIO environment variable and the

-labelio command line flag.

To have the messages labeled with the appropriate task id, you could:

 Table 37. Example of setting the MP_LABELIO environment variable or -labelio command line flag

Set the MP_LABELIO environment variable: Use the -labelio flag when invoking the program:

ENTER

export MP_LABELIO=yes

ENTER

poe program -labelio yes

To no longer have message output labeled, set the MP_LABELIO environment

variable to no.

Setting the message reporting level for standard error (STDERR)

You can set the environment variable MP_INFOLEVEL to specify the level of

messages you want from POE. You can set the value of MP_INFOLEVEL to one of

the integers shown in the following table. The integers 0, 1, and 2 give you different

levels of informational, warning, and error messages. The integers 3 through 6

42 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|
|

|
|

|

indicate debug levels that provide additional debugging and diagnostic information.

Should you require help from the IBM Support Center in resolving a PE-related

problem, you will probably be asked to run with one of the debug levels. As with

most POE environment variables, you can override MP_INFOLEVEL when you

invoke a program. This is done using either the -infolevel or -ilevel flag followed by

the appropriate integer.

When MP_INFOLEVEL is set to 0, the STDERR output may contain null characters

under conditions where warning or informational messages would be displayed

under higher levels.

Table 38 shows the valid values for MP_INFOLEVEL and the level of message

reporting provided by each.

 Table 38. MP_INFOLEVEL values and associated levels of message reporting

This integer:

Indicates this

level of message

reporting: In other words:

0 Error Only error messages from POE are written to STDERR.

1 Normal Warning and error messages from POE are written to STDERR. This level

of message reporting is the default.

2 Verbose Informational, warning, and error messages from POE are written to

STDERR.

3 Debug Level 1 Informational, warning, and error messages from POE are written to

STDERR. Also written is some high-level debugging and diagnostic

information.

4 Debug Level 2 Informational, warning, and error messages from POE are written to

STDERR. Also written is some high- and low-level debugging and

diagnostic information.

5 Debug Level 3 Debug level 2 messages plus some additional loop detail.

6 Debug Level 4 Debug level 3 messages plus other informational error messages for the

greatest amount of diagnostic information.

Let’s say you want the POE message level set to verbose. Table 39 shows the two

ways to do this. You could:

 Table 39. Example of setting MP_INFOLEVEL to verbose

Set the MP_INFOLEVEL environment variable: Use the -infolevel flag when invoking the program:

ENTER

export MP_INFOLEVEL=2

ENTER

poe program -infolevel 2

 or poe program -ilevel 2

As with most POE command line flags, the -infolevel or -ilevel flag temporarily

override their associated environment variable.

Generating a diagnostic log on remote nodes

Using the MP_PMDLOG environment variable, you can also specify that diagnostic

messages should be logged to a file in /tmp on each of the remote nodes of your

partition.

Chapter 2. Executing parallel programs 43

|
|

|

|

The log file is named mplog.jobid.n where jobid is a unique job identifier. The jobid

will be the same for all remote nodes. Should you require help from the IBM

Support Center in resolving a PE-related problem, you will probably be asked to

generate these diagnostic logs.

The ability to generate diagnostic logs on each node is particularly useful for

isolating the cause of abnormal termination, especially when the connection

between the remote node and the home node Partition Manager has been broken.

As with most POE environment variables, you can temporarily override the value of

MP_PMDLOG using its associated command line flag -pmdlog.

Table 40 describes how to set the MP_PMDLOG environment variable and the

-pmdlog command line flag.

For example, to generate a pmd log file, you could:

 Table 40. Example of setting the MP_PMDLOG environment variable or -pmdlog command line flag

Set the MP_PMDLOG environment variable: Use the -pmdlog flag when invoking the program:

ENTER

export MP_PMDLOG=yes

ENTER

poe program -pmdlog yes

Note: By default, MP_PMDLOG is set to no. No diagnostic logs are generated. You

should not run MP_PMDLOG routinely, because this will greatly impact

performance and fill up your file system space.

Determining which nodes will participate in parallel file I/O

MPI has a number of subroutines that enable your application program to perform

efficient parallel input-output operations. These subroutines (collectively referred to

as ″MPI-IO″) allow efficient file I/O on a data structure which is distributed across

several tasks for computation, but organized in a unified way in a single underlying

file. MPI-IO presupposes a single parallel file system underlying all the tasks in the

parallel job; PE’s implementation of it is intended for use with the IBM Generalized

Parallel File System (GPFS).

If your application program uses MPI-IO subroutines, all tasks in your MPI job will,

by default, participate in parallel I/O. You can, however, specify that only tasks on a

subset of the nodes in your job should handle parallel I/O. You might want to do this

to ensure that all I/O operations are performed on the same node. To specify the

nodes that should participate in parallel I/O, you:

v create an I/O node file (a text file that lists the nodes that should handle parallel

I/O) and

v set the MP_IONODEFILE environment variable to the name of the I/O node file.

As with most POE environment variables, MP_IONODEFILE has an associated

command line flag -ionodefile.

For example, say your job will be run with the following host list file dictating the

nodes on which your program should run.

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

44 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|
|

|

Say, however, that you want parallel I/O handled by only two of these nodes —

host5_name and host6_name. To specify this, you would create an I/O node file

that lists just the two host names.

host5_name

host6_name

One situation in which MP_IONODEFILE becomes useful is when running on a

cluster of workstations which will not have a true parallel file system across multiple

machines. By selecting one workstation to do the actual I/O, you can reliably use

JFS, NFS, and AFS® files with MPI-IO across multiple machines. (The file systems

currently used, like NFS and AFS, to make a set of files available to multiple

workstations are not parallel file systems in the way that GPFS is.) With respect to

MPI-IO, a cluster without GPFS should use an I/O node file.

There should be no comments or blank lines in the I/O node file, there should be

only one node name per line. Node names may be in any form recognizable to

name service on the machine. Names which are not recognizable or which appear

more that once yield advisory messages. Names which are valid but which do not

represent nodes in the job are ignored. If MP_IONODEFILE is used and no node

listed in the file is involved in the job, the job will abort. MP_IONODEFILE is most

useful when used in conjunction with a host list file.

To indicate that the Partition Manager should use a particular I/O node file to

determine which nodes handle parallel I/O, you must set the MP_IONODEFILE

environment variable (or use the -ionodefile command line flag to specify) the

name of the file. Table 41 describes how to set the MP_IONODEFILE environment

variable and the -iodnodefile command line flag. You can specify the file using its

relative or full path name.

For example, say you have created an I/O node file ionodes in the directory

/u/dlecker. You could:

 Table 41. Example of setting the MP_IONODEFILE environment variable or -ionodefile command line flag

Set the MP_IONODEFILE environment variable: Use the -ionodefile flag when invoking the program:

ENTER export MP_IONODEFILE=/u/dlecker/ionodes ENTER poe program -ionodefile /u/dlecker/ionodes

Checkpointing and restarting programs

POE, beginning with Parallel Environment Version 4.2, provides enhanced

capabilities to checkpoint and later restart the entire set of programs that make up a

parallel application, including the checkpoint and restart of POE itself. A number of

previous restrictions for checkpointing have been removed as well.

Checkpointing programs

Checkpointing is a method of periodically saving the state of job so that, if for some

reason the job does not complete, it can be restarted from the saved state. At

checkpoint time, checkpoint files are created on the executing machines. The

checkpoint file of POE contains all information required to restart the job from the

checkpoint files of the parallel applications.

Earlier versions of Parallel Environment’s checkpoint/restart capability were based

on user level checkpointing, with significant limitations. You can now checkpoint

both batch and interactive jobs using LoadLeveler or PE in a system-initiated mode

(external to the task) or in a user-initiated mode (internal to the task).

Chapter 2. Executing parallel programs 45

|
|

|
|

|

|
|
|
|

With system-initiated checkpointing, you can use the PE poeckpt command to

checkpoint a non-LoadLeveler POE job. The applications are checkpointed at the

point in their processing they happen to be when the checkpoint is issued.

Checkpoint files are written for each task of the parallel application and for the POE

executable itself. The locations of these files are controlled by the setting of the

MP_CKPTFILE and MP_CKPTDIR environment variables. LoadLeveler also

provides the llckpt command for checkpointing jobs being run under LoadLeveler

(for more information, see Tivoli Workload Scheduler LoadLeveler: Using and

Administering).

For a user-initiated checkpointing, the application may specify whether all tasks

must issue the checkpoint request before the checkpoint occurs, or that one task of

the application may cause the checkpoint of all tasks (and POE) to occur. The

former is called a complete user-initiated checkpoint, and the latter is called a

partial user-initiated checkpoint. In a complete user-initiated checkpoint, each task

executes the application up to the point of the mpc_init_ckpt function call. In a

partial user-initiated checkpoint, only one task executes the application up to the

point of the mpc_init_ckpt call, and the remaining tasks are checkpointed at

whatever point in their processing they happen to be when the checkpoint occurs,

as in a system-initiated checkpoint.

In either system-initiated or user-initiated mode, mpc_set_ckpt_callbacks and

mpc_unset_ckpt_callbacks calls can be made from within your parallel program.

The IBM Parallel Environment: MPI Programming Guide. contains the specific

information on these functions.

Using the settings of the MP_CKPTDIR and MP_CKPTFILE POE environment

variables, the checkpoint data files are saved during the checkpointing phase, and

the job is restarted by reading data from the checkpoint files during the restart

phase. The MP_CHECKDIR and MP_CHECKFILE environment variables from

previous releases are no longer used by POE.

When a checkpoint is taken, a set of checkpoint files is generated which consists of

a POE checkpoint file and checkpoint files from each task of the parallel application.

Each parallel task is checkpointed separately, and any processes created by a

parallel task make up a checkpoint/restart group. The task checkpoint file contains

information for all processes in the checkpoint/restart group. The checkpoint

directory name is derived from the MP_CKPTFILE value (if it contains a full path

name), the MP_CKPTDIR value, or the initial working directory. Tasks that change

directories internally will not impact the place where the checkpoint file is written.

Note: When running a parallel program under LoadLeveler, the MP_CKPTDIR and

MP_CKPTFILE environment variables are set by LoadLeveler. If the value

for the checkpoint file name or directory is specified in the job command file,

those values will override the current settings.

When the checkpointing files are created, tags are added to the names to

differentiate between earlier versions of the files.

Restarting programs

The PE poerestart command can be used to restart any interactive checkpointed

jobs. POE is restarted first and it uses the saved information from its checkpoint file

to identify the task checkpoint files to also restart. You can restart the application on

the same set or different set of nodes, but the number of tasks and the task

geometry must remain the same. When the restart function restarts a program, it

retrieves the program state and data information from the checkpoint file. Note also

46 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

that the restart function restores file pointers to the points at which the checkpoint

occurred, but it does not restore the file content.

Checkpointing limitations

When checkpointing a program, there are a few limitations of which you should be

aware. You can find a complete list of the limitations in the IBM Parallel

Environment: MPI Programming Guide. For example, when POE is invoked, the

CHECKPOINT environment variable must be set to yes for POE and any of the

parallel tasks to be checkpointable. LAPI programs can also be checkpointed if they

meet the limitations.

Managing checkpoint files

The ability to checkpoint or restart programs is controlled by the definition and

availability of the checkpoint files, as specified by the MP_CKPTFILE environment

variable.

The checkpoint files may be defined on the local file system (JFS) of the node on

which the instance of the program is running, or they may be defined in a shared

file system (such as NFS, AFS, DFS, GPFS, etc.). When the files are in a local file

system, then in order to perform process migration, the checkpoint files will have to

be moved to the new system on which the process is to be restarted. If the old

system crashed and is unavailable, it may not be possible to restart the program. It

may be necessary, therefore, to use some kind of file management to avoid such a

problem. If migration is not desired, it is sufficient to place checkpoint files in the

local JFS file system.

The program checkpoint files can be large, and numerous. There is the potential

need for significant amounts of available disk space to maintain the files. If possible,

you should avoid using NFS, AFS, or DFS to manage checkpoint files. The nature

of these systems is such that it takes a very long time to write and read large files.

Instead, use GPFS or JFS.

If a local JFS file system is used, the checkpoint file must be written to each remote

task’s local file system during checkpointing. Consequently, during a restart, each

remote task’s local file system must be able to access the checkpoint file, from the

previously checkpointed program, from the directory where the checkpoint file was

written when the checkpoint occurred. This is of special concern when opting to

restart a program on a different set of nodes from which it was checkpointed. The

local checkpoint file may need to be relocated to any new nodes. For these

reasons, it is suggested that GPFS be the file system best suited for checkpoint

and restart file management.

A checkpoint/restart scenario

A user’s parallel application has been running on two nodes for six hours when the

user is informed that the nodes must be taken down for service in an hour. The

user expects the application to run for three more hours, and does not want to have

to restart the application from the beginning on different nodes. The user set the

CHECKPOINT environment variable to yes before issuing the POE command, so

that the operating system would allow the checkpoint to occur. Furthermore, the

user set the MP_CKPTDIR environment variable to a GPFS directory, /gpfs, so that

the checkpoint files would be accessible from other nodes. The user also set the

MP_CKPTFILE environment variable to the name of the application, 9hourjob, so it

can be easily identified later.

After setting the MP_CKPTDIR and MP_CKPTFILE environment variables, the user

obtains the process identifier of the POE process. Then, the user issues the

Chapter 2. Executing parallel programs 47

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

poeckpt command, along with the -k option so that the tasks will be terminated

once the checkpoints are successfully completed. The checkpoints of the parallel

tasks are taken first, and then the checkpoint of POE occurs. The poeckpt

command reports the following:

poeckpt: Checkpoint of POE process 12345 has succeeded.

poeckpt: The /gpfs/9hourjob.0 checkpoint file has been created.

The filename indicated in the output, /gpfs/9hourjob, is the checkpoint file of the

POE process which will be used later when the parallel application is restarted. The

.0 suffix is a tag used to allow one set of previously successful checkpoint files to

be saved (a subsequent checkpoint on this program, although unlikely in this

scenario, would use tag 1).

To determine the behavior of the checkpoint function, the user issues:

ls /gpfs/9hour*

and sees the following output:

/gpfs/9hourjob.0 /gpfs/9hourjob.0.0 /gpfs/9hourjob.1.0

The additional files besides the one reported by the output are the checkpoint files

from each of the tasks that made up the parallel application. The last 0 in the task

checkpoint files represents the checkpoint tag as described previously. The digit

before the tag is the task number within the parallel application.

The user finds two other nodes that can be used to restart the parallel job and sets

up a host.list, containing these two host names, in the directory from which the user

will run the poerestart command. The user issues:

poerestart /gpfs/9hourjob.0

The restarted POE from this checkpoint file remembers the names of the task

checkpoint files to restart from, tells the Partition Manager Daemon on each node to

restart each parallel task from their respective checkpoint file, and the parallel

application is running again. The job completes in three hours, and produces the

same results as it would have had it run for nine hours on the original nodes.

Managing task affinity on large SMP nodes

Large SMP nodes are organized around components called Multi-chip Modules

(MCM). An MCM contains several processors, I/O buses, and memory. While a

processor in an MCM can access the I/O bus and memory in another MCM,

demanding applications may see improved performance if the processor, the

memory it uses, and the I/O adapter it connects to, are all in the same MCM.

For AIX 5L V5.3 TL 5300-05, the memory affinity is controlled by the vmo

command. Parallel Environment provides the environment variable

MP_TASK_AFFINITY={MCM | SNI | mcm-list} to control the placement of tasks of a

parallel job so that the task will not be migrated between MCM’s during its

execution.

When POE is run under LoadLeveler 3.3.1 or later (which includes all User Space

jobs), POE relies on LoadLeveler to handle scheduling affinity, based on

LoadLeveler job control file keywords that POE sets up in submitting the job.

Memory and task affinity must be enabled in the LoadLeveler configuration file

(using the RSET_SUPPORT keyword). With interactive POE jobs, the possible

MP_TASK_AFFINITY values are:

48 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|

|

|
|
|
|
|

|

|

|
|
|

v MP_TASK_AFFINITY=MCM – the tasks are allocated in a round-robin fashion

among the MCM’s attached to the job by WLM. By default, the tasks are

allocated to all the MCMs in the node. When run under LoadLeveler 3.3.1 or

later, POE sets the LoadLeveler MCM_AFFINITY_OPTIONS and RSET

keywords to allow LoadLeveler to handle scheduling affinity, as follows:

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_MEM_PREF,

MCM_SNI_NONE, and MCM_DISTRIBUTE

– Sets the RSET keyword to RSET_MCM_AFFINITY.

v MP_TASK_AFFINITY=SNI – the tasks are allocated to the MCM in common with

the first adapter assigned to the task by LoadLeveler. This applies only to User

Space MPI jobs. MP_TASK_AFFINITY=SNI should not be specified for IP jobs.

When run under LoadLeveler 3.3.1 or later, POE sets the LoadLeveler

MCM_AFFINITY_OPTIONS and RSET keywords to allow LoadLeveler to

handling scheduling affinity, as follows:

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_SNI_PREF, and

MCM_DISTRIBUTE

– Sets the RSET keyword to RSET_MCM_AFFINITY.

v MP_TASK_AFFINITY=mcm-list – tasks will be assigned on a round-robin basis

to this set, within the constraint of an inherited rset, if any. ’mcm-list’ specifies a

set of system level (LPAR) logical MCMs that can be attached to. Any MCMs

outside the constraint set will be attempted, but will fail. If a single MCM number

is specified as the list, all tasks are assigned to that MCM. This option is only

valid when running either without LoadLeveler, or with LoadLeveler Version 3.2

(or earlier) that does not support scheduling affinity.

v When a value of -1 is specified, no affinity request will be made (effectively this

disables task affinity).

Note: The MP_TASK_AFFINITY settings are ignored for batch jobs. If a batch job

requires memory affinity, the LoadLeveler RSET and

MCM_AFFINITY_OPTIONS keywords need to be specified in the

LoadLeveler job command file. Refer to IBM Tivoli Workload Scheduler

LoadLeveler: Using and Administering for more information.

POE will specify the affinity options as LoadLeveler preferences, not requirements,

meaning if the affinity option cannot be satisfied, the job may still run. If you want a

different set of LoadLeveler scheduling affinity options, you must use your own

LoadLeveler JCF file, and not specify POE’s MP_TASK_AFFINITY option, which

will result in POE setting up the LoadLeveler JCF options as described above.

Smaller SMP nodes may be organized around Dual Chip Modules (DCMs). From

POE’s viewpoint, a DCM is equivalent to an MCM, and MP_TASK_AFFINITY=MCM

will round-robin tasks among DCMs. Multithreaded applications may need to be

aware that a DCM has only 1 or 2 processors, while MCMs have up to 8

processors.

The rset_query command can also be used to verify that memory affinity

assignments are being performed correctly. The rset_query output shows the

number of available processors, memory pools, memory, processors in resource

sets, on a per-MCM or per-DCM basis. The rset_query command takes no options

or parameters, and needs to be invoked under POE as a parallel job so that it

displays the MCM assignments POE is using when running. It is also possible to

invoke rset_query as part of a multiple step POE job, where rset_query is run as

Chapter 2. Executing parallel programs 49

|
|
|

|
|

|

|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

the first step prior to running the application code in a subsequent step. Using

MP_LABELIO=yes and MP_STDOUTMODE=ordered may help you interpret the

output more easily.

Running POE from a shell script

Due to an AIX limitation, if the program being run by POE is a shell script AND

there are more than 5 tasks being run per node, then the script must be run under

ksh93 by using:

#!/bin/ksh93

on the first line of the script.

POE user authorization

PE Version 4 uses an enhanced set of security methods based on Cluster Security

Services in RSCT.

Cluster based security

With Cluster Based Security, the system administrator needs to ensure that UNIX

Host Based authentication is enabled and properly configured on all nodes. Refer to

the IBM Parallel Environment: Installation and the IBM RSCT: Technical Reference

for what this entails.

From a user’s point of view, users will be required to have the proper entries in the

/etc/hosts.equiv or .rhosts files, in order to ensure proper access to each node, as

described in “Using AIX user authorization.”

Using AIX user authorization

With AIX-based authentication, you are required to have an .rhosts file set up in

your home directory on each of the remote processor nodes. Alternatively, your user

id on the home node can be authorized in the /etc/host.equiv file on each remote

node. For information on the TCP/IP .rhosts file format, see IBM AIX 5L Version 5

Files Reference.

Using POE with MALLOCDEBUG

Submitting a POE job that uses MALLOCDEBUG with an align:n option of other

than 8 may result in undefined behavior. To allow a POE parallel program to run

with an align:n option other than 8, you will need to create a script file. For

example, say the POE program is named myprog. You could create the following

script file:

MALLOCTYPE=debug

MALLOCDEBUG=align:0

myprog myprog_options

Once you had created the script file, you could then run the script file using the poe

command. For example, if the script file were named myprog.sh you would enter:

poe myprog.sh <poe_options> <myprog_options>

Instead of:

poe myprog <poe_options> <myprog_options>

50 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|

Using POE with AIX large pages

Memory requests in applications that use large pages in mandatory mode may fail

unless there are a minimum of 16 large pages (16M each) available for each

parallel task that makes a memory request. If any task requests >256M, an

additional 16 large pages must be available for each task, for each additional 256M

requested. In addition, unless the following workaround is used, an additional 16

large pages must be available for the POE process as well.

To avoid having the POE process use mandatory large pages, do not set the

LDR_CNTRL environment variable to LARGE_PAGE_DATA=M before invoking

POE. The value of this environment variable, (M in this case) is case sensitive.

Instead, use POE to invoke a script that first exports the environment variable, and

then invokes the parallel program.

POE provides the MP_TLP_REQUIRED environment variable and -tlp_required

command line flag to ensure that running jobs have been compiled with large

pages. The options are:

warn POE issues a warning message for any job that was not compiled with

large pages, and the job will continue to run.

kill POE detects and kills any job that was not compiled with large pages.

none POE takes no action (this is the default).

Using MP_TLP_REQUIRED may help avoid system failures due to a lack of paging

space, where large memory applications are executed without being compiled to

use large pages.

Chapter 2. Executing parallel programs 51

|
|
|

||
|

||

||

|
|
|

52 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Chapter 3. Managing POE jobs

There are a number of tasks you need to understand that are related to managing

POE jobs. These tasks include how to allocate nodes, saving core files, improving

parallel job performance, stopping and cancelling a job, detecting remote node

failures, and so on.

Multi-task corefile

With the MP_COREDIR environment variable, you can create a separate directory

to save a corefile for each task. The corresponding command line option is

-coredir. Creating this type of directory is useful when you are running a parallel

job on one node, and your job dumps a corefile. By checking the directory, you can

see which task dumped the file. When setting MP_COREDIR, you specify the first

attribute of the directory name. The second attribute is the task id. If you do not

specify a directory, the default is coredir. The subdirectory containing each task’s

corefile is named coredir.taskid.

You can also disable the creation of a new subdirectory to save a corefile, by

specifying -coredir or MP_COREDIR with a value of none. When disabled, corefiles

will be written to /tmp instead of your current directory.

Disabling the creation of a new subdirectory may be necessary in situations where

programs are abnormally terminating due to memory allocation failures, (for

example, a malloc() call is the result of the original corefile). In these cases, setting

-coredir or MP_COREDIR to none may prevent a situation where POE could hang

as a result of a memory allocation problem while it is attempting to create a new

subdirectory to hold the corefile.

The following examples show what happens when you set the environment

variable:

Example 1:

MP_COREDIR=my_parallel_cores

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/my_parallel_cores.0/core

/current directory/my_parallel_cores.1/core

Example 2:

© Copyright IBM Corp. 1993, 2006 53

|
|
|
|

MP_COREDIR not specified

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/coredir.0/core

/current directory/coredir.1/core

Example 3:

MP_COREDIR=none

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/tmp/core

Note: If the tasks that you run produce the same process or task numbers as

previous tasks, only the last core file, with that process ID and task ID

combination, are saved. Previous files may be overwritten.

Support for performance improvements

Parallel job performance can be greatly affected by the Linux operating system’s

network settings and by the values that you assign to a set of environment

variables that are recognized by POE and by various libraries of the protocol stack.

See the IBM Parallel Environment: Installation for information on how to tune the

Linux operating system and network devices for better parallel job performance.

See the IBM Parallel Environment: MPI Programming Guide for information on how

various environment variables affect the performance of a parallel job.

The following sections discuss how to use the MP_BUFFER_MEM and

MP_CSS_INTERRUPT environment variables.

Using MP_BUFFER_MEM

The MP_BUFFER_MEM environment variable specifies the size of the Early Arrival

(EA) buffer that is used by the communication subsystem to buffer eagerly sent

54 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

messages that arrive before there is a matching receive posted. This value can also

be specified with the -buffer_mem command line flag. The command line flag

overrides a value set with the environment variable.

The total amount of Early Arrival buffer space allocated by a task is controlled by

MP_BUFFER_MEM. If a single value is given, it is important for good performance

that the amount of memory specified by MP_BUFFER_MEM be sufficient to hold a

reasonable number of unmatched messages of size up to the eager_limit from

every possible sender. If necessary, PE may reduce the eager_limit to achieve this.

The memory is preallocated and preformatted for efficiency. Default values are

usually sufficient for jobs up to 512 tasks.

IMPORTANT

The default size of the Early Arrival buffer has been changed from 2.8 MB to

64 MB for 32-bit IP applications. This is important to note, because the new

default could cause your application to fail due to insufficient memory. As a

result, you may need to adjust your application’s memory allocation. For more

information, see “PE Version 4 Release 3 migration information” on page 4.

 If two values (M1,M2) are given for MP_BUFFER_MEM, the first value specifies the

amount of preformatted memory (and presumably is an estimate of the actual

memory requirement for Early Arrival messages); the second value is used as the

maximum requirement for Early Arrival buffering. PE ensures that this memory

requirement is not exceeded under any circumstances by limiting the number of

outstanding eager_limit messages from any sender.

This environment variable has two forms, as follows:

MP_BUFFER_MEM=pre_allocated_size

MP_BUFFER_MEM=pre_allocated_size,maximum_size

The first form is compatible with prior releases and is still suitable for most

applications. The second provides flexibility that may be useful for some

applications, in particular at large task counts.

Examples:

export MP_BUFFER_MEM=32M

export MP_BUFFER_MEM=32M,128M

export MP_BUFFER_MEM=0,128M

export MP_BUFFER_MEM=,128M

The pre_allocated_size argument is used to specify the size of the buffer to be

preallocated and reserved for use by the MPI library. This space is allocated during

initialization. If you omit this argument, or if you do not specify the

MP_BUFFER_MEM variable at all, the MPI library assigns a default value of 64 MB

for both User Space and IP applications. The maximum allowable value is 256 MB.

For the pre_allocated_size argument, you may specify a positive number or zero,

or provide the comma but omit the value. If the positive number is greater than the

minimum size that is needed by MPI for correct operation and no greater than

256MB, a buffer of this size will be preallocated. An omitted value tells the Parallel

Environment implementation of MPI to use the default preallocated EA buffer size. A

zero tells the Parallel Environment implementation of MPI to use the minimum

Chapter 3. Managing POE jobs 55

|
|
|
|
|

|

workable EA preallocation. You must specify the value in bytes, and you may use K

(kilobytes), M (megabytes), or G (gigabytes) as part of the specification.

The maximum_size argument is used to specify the maximum size to which the

EA buffer can temporarily grow when the preallocated portion of the early arrival

buffer has been filled. If the behavior of your application is such that the extra

space really must be used, it will be borrowed from the heap as needed. In that

case, it can be regarded as an ongoing contention for memory between the MPI

library and the application. Therefore, if your application actually uses more than the

preallocated space, you should consider raising the preallocation to cover it. That is,

if you can afford to have the extra memory used for early arrivals, then it probably

makes sense to preallocate it. If you cannot spare the extra memory, it may be

better to remove the maximum_size value and let MPI constrain eager messages

to stay within the memory you can afford to preallocate. See the description of

MP_STATISTICS in “poe” on page 113.

You may specify a positive number or omit the comma and specification. You must

specify the value in bytes, and you may use K (kilobytes), M (megabytes), or G

(gigabytes) as part of the specification. Note also that for 64-bit applications, the

maximum buffer size may exceed 4 gigabytes.

Important: You can use the -buffer_mem command line flag to specify the

pre_allocated_size and maximum_size values or pre_allocated_size alone.

However, note that the two values you specify must be separated by a comma, and

blanks are not allowed unless you surround the values with quotes. The following

examples show correct use of the -buffer_mem flag:

poe -buffer_mem 32M

poe -buffer_mem 32M,64M

poe -buffer_mem ’32M, 64M’

poe -buffer_mem ,64M

To preallocate the entire EA buffer, specify MP_BUFFER_MEM and provide a single

value. The value you provide will be assigned to both the pre_allocated_size and

maximum_size arguments. The maximum allowable value is 256 MB.

The default value for MP_BUFFER_MEM is 64 MB for both User Space and IP

applications.

If you will be checkpointing a program, be aware that the amount of space needed

for the checkpoint files will include the entire preallocated buffer, even if only parts

of it are in use. The extent to which the heap has been allocated also affects the

size of the checkpoint files.

Important: Setting the MP_BUFFER_MEM maximum to a value greater than the

preallocated size implies that you are either able to commit enough heap memory

to early arrivals to cover the difference, or that you are confident that the maximum

demand will not occur and you have sufficient memory for the actual peak. If the

malloc() fails due to unexpected peaks in EA buffer demand and insufficient

memory in the system, the job is terminated. For most well-structured MPI

applications, you will see only modest demand for early arrival space, even when

you set a high upper bound.

56 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|
|
|
|
|
|
|
|

Note that the MPI library adds 64K to all of the values you specify, which it uses for

internal management of the Early Arrival buffer.

Using MP_CSS_INTERRUPT

The MP_CSS_INTERRUPT environment variable may take the value of either yes

or no. By default it is set to no. In certain applications, setting this value to yes will

provide improved performance.

The following briefly summarizes some general application characteristics that could

potentially benefit from setting MP_CSS_INTERRUPT=yes.

Applications which have the following characteristics may see performance

improvements from setting the POE environment variable MP_CSS_INTERRUPT to

yes:

v Applications that use nonblocking send or receive operations for communication.

v Applications that have non-synchronized sets of send or receive pairs. In other

words, the send from node0 is issued at a different point in time with respect to

the matching receive in node1.

v Applications that do not issue waits for nonblocking send or receive operations

immediately after the send or receive, but rather do some computation prior to

issuing the waits.

In all of the previous cases, the application is taking advantage of the asynchronous

nature of the nonblocking communication subroutines. This essentially means that

the calls to the nonblocking send or receive routines do not actually ensure the

transmission of data from one node to the next, but only post the send or receive

and then return immediately back to the user application for continued processing.

However, since the User Space protocol executes within the user’s process, it must

regain control from the application to advance asynchronous requests for

communication.

The communication subsystem can regain control from the application in any one of

three different methods:

1. Any subsequent calls to the communication subsystem to post send or receive,

or to wait on messages.

2. A timer pop occurring periodically to allow the communication subsystem to do

recovery for transmission errors and to make progress on pending nonblocking

communications.

3. If the value of MP_CSS_INTERRUPT is set to yes, the communication

subsystem device driver will notify the user application when data is received or

buffer space is available to transmit data.

Method 1 and Method 2 are always enabled. Method 3 is controlled by the POE

environment variable MP_CSS_INTERRUPT, and is enabled when this variable is

set to yes.

For applications that post nonblocking sends or receives, and turn to computation

for a period before posting the wait, any communication that is to happen while the

application is computing must occur through the second or third of these three

methods. If MP_CSS_INTERRUPT is not enabled, only the timer pop method is

available to advance communication and time pops are far enough apart so they

make very slow progress. The goal in overlapping communication and computation

Chapter 3. Managing POE jobs 57

is to hide latency by doing useful computation while the data moves. In the ideal

case, the data will have been transferred by the time the computation finishes, and

the deferred wait can return immediately.

For example, consider the following application template, where two tasks execute

the same code:

 LOOP

 MPI_ISEND (A, ..,partner,.., send_req)

 MPI_IRECV (B, ..,partner,.., recv_req)

 MPI_WAIT (recv_req, )

 COMPUTE LOOP1 /* uses data in B */

 MPI_WAIT (send_req, )

 COMPUTE LOOP2 (modifies A)

END LOOP

In this example, data B is guaranteed to be received by the return from the wait for

recv_req and it is likely the return from the wait call will be delayed while the data is

actually flowing in. Data B can then be safely used in the COMPUTE LOOP1. Data

A is not guaranteed to be fully sent until the wait for send_req returns, but this is

acceptable for the task in COMPUTE LOOP1 because it can compute with data B.

In this simple example, it is likely that one task will receive data B during the wait

for recv_req and enter COMPUTE LOOP1 before the send of data A has finished.

When this happens, the rest of the work to send data A will need to progress while

the task is computing. This is important for two reasons:

v A task that finishes its receive and goes on to COMPUTE LOOP1 before also

finishing the send will stall its partner in its receive while waiting for that send to

finish. The stalling of the task in its receive is directly related to the

noncontinuous flow of communication from the task that turned to computing.

With MP_CSS_INTERRUPT=yes, each time the communication is ready to make

more progress on the send, the communication subsystem device driver

interrupts the computation just long enough to advance the communication.

Therefore, data flow from the task that is computing to the partner that is stalled

is maintained and that stalled task also gets to move on to computation.

v By the time COMPUTE LOOP1 is done, it is likely that data A has all been sent

and the return from the wait can be prompt.

The reason this example is simple is that it involves a race condition that makes it

likely one task will move on to computation while the other is still waiting for a

communication that the computing task is no longer concerned with.

MP_CSS_INTERRUPT makes sure that communication makes reasonable progress

but it will be slower than if the send had also been waited. Because the outer loop

makes both tasks move in lock step, any delay that the race-winning task causes its

partner, by leaving it stuck in a receive wait while the partner computes, will later

delay that winner when it needs to postpone its next iteration until the delayed task

catches up.

Specifying the format of corefiles or suppressing corefile generation

Using the MP_COREFILE_FORMAT environment variable (or its associated

command line flag -corefile_format), you can determine the format of corefiles

generated when processes terminate abnormally — you can specify either

traditional AIX corefiles or lightweight corefiles that conform to the Parallel Tool

Consortium’s Standardized Lightweight Corefile Format (LCF).

58 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Table 42 describes how setting the MP_COREFILE_FORMAT environment variable

or the -corefile_format command line flag determines the format of the corefiles

that are generated.

 Table 42. MP_COREFILE_FORMAT settings

If the MP_COREFILE_FORMAT

environment variable or

-corefile_format flag:

Then: For more information, see:

is not set/used standard AIX corefiles will be

generated when processes terminate

abnormally.

“Generating standard AIX corefiles”

specifies the string ″STDERR″ the corefile information will be output

to standard error when processes

terminate abnormally.

“Writing corefile information to

standard error”

specifies any other string lightweight corefiles will be generated

when processes terminate

abnormally.

“Generating lightweight corefiles” on

page 60

Note: Although the AIX operating system provides its own lightweight corefile

subroutine and environment variable (LIGHTWEIGHT_CORE), be aware that

it is intended for serial programs only. When using the AIX

LIGHTWEIGHT_CORE environment variable with parallel programs compiled

with the POE compiler scripts, the resulting output is unpredictable. For this

reason, you should use the POE lightweight corefile flags and environment

variables for parallel programs.

Generating standard AIX corefiles

By default, POE processes that terminate abnormally generate standard AIX

corefiles. Since this is the default behavior, you will not typically need to explicitly

specify that standard AIX corefiles should be generated. If, however, the

MP_COREFILE_FORMAT environment variable has previously been set, you will

need to unset it in order to once again get the default behavior. To unset the

MP_COREFILE_FORMAT environment variable, you would

ENTER

unset MP_COREFILE_FORMAT

Generating corefiles for sigterm

POE automatically generates corefiles for those signals that result in corefiles, with

the exception of SIGTERM. This is because the SIGTERM signal can also be

issued as the result of an explicit request to terminate via an MPI_Abort() call, in

which case, it may not be beneficial to have a corefile created.

POE provides an option, via the MP_COREFILE_SIGTERM environment variable

(and the corresponding -corefile_sigterm command line flag), to allow the creation

of a corefile for SIGTERM, when MP_COREFILE_SIGTERM or -corefile_sigterm

is set to yes. The default is no.

Writing corefile information to standard error

As described in “Generating standard AIX corefiles,” POE processes that terminate

abnormally will, by default, generate standard AIX corefiles. If you prefer, you can

instruct POE to write the stack trace or lightweight corefile information to standard

error instead. To do this, set the MP_COREFILE_FORMAT environment variable to

the string STDERR (in uppercase). As with most POE environment variables, you

Chapter 3. Managing POE jobs 59

|
|
|

|

can temporarily override the value of MP_COREFILE_FORMAT using its

associated command line flag — corefile_format. Table 43 describes how to set

the MP_COREFILE_FORMAT environment variable and the -corefile_format

command line flag to write corefile information to standard error.

For example, to specify that lightweight corefile information should be written to

standard error, you could:

 Table 43. Example of writing corefile information to standard error by setting the MP_COREFILE_FORMAT

environment variable or -corefile_format command line flag

Set the MP_COREFILE_FORMAT environment

variable:

Use the -corefile_format flag when invoking the

program:

ENTER export MP_COREFILE_FORMAT=STDERR ENTER poe program -corefile_format STDERR

Generating lightweight corefiles

By default, POE processes that terminate abnormally generate standard AIX

corefiles. Often, however, traditional AIX corefiles are insufficient for debugging your

program. This is because traditional AIX corefiles provide information that is too

low-level for you to get a general picture of the overall status of your program. In

addition, traditional AIX corefiles tend to be large and so can consume too much, if

not all, available disk space. In being written out, theses corefiles can take up an

unacceptable amount of CPU time and network bandwidth. These problems are

especially acute in a large-scale parallel-processing environment, when the

problems can be multiplied by hundreds or thousands of processes.

To address these problems with traditional corefiles, the Parallel Tools Consortium

(a collaborative body of parallel-programming researchers, developers, and users

from governmental, industrial, and academic sectors) has developed a corefile

format called the Standardized Lightweight Corefile Format (LCF). As its name

implies, a lightweight corefile does not have the often unnecessary low-level detail

found in a traditional corefile; instead a lightweight corefile contains thread stack

traces (listings of function calls that led to the error). Because of its smaller size, a

lightweight corefile can be generated without consuming as much disk space, CPU

time, and network bandwidth as a traditional AIX corefile. In addition, the LCF

format can be a more useful aid in debugging threaded programs.

Using the MP_COREFILE_FORMAT environment variable (or its associated

command line flag -corefile_format), you can specify that POE should generate

lightweight corefiles instead of standard AIX corefiles. To do this, simply specify the

lightweight corefile name. Table 44 describes how to set the

MP_COREFILE_FORMAT environment variable and the -corefile_format

command line flag to specify that POE should generate lightweight corefiles.

For example, to specify the lightweight corefile name light_core, you could:

 Table 44. Example of specifying lightweight corefiles by setting the MP_COREFILE_FORMAT environment variable or

-corefile_format command line flag

Set the MP_COREFILE_FORMAT environment

variable:

Use the -corefile_format flag when invoking the

program:

ENTER export MP_COREFILE_FORMAT=light_core ENTER poe program -corefile_format light_core

60 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|
|

|
|
|

|
|

One lightweight corefile (in this example, named light_core) for each process will be

saved in a separate subdirectory.

By default, these subdirectories will be prefixed by the string coredir and suffixed by

the task id (as in coredir.0, coredir.1, and so on). You can specify a prefix other

than the default coredir by setting the MP_COREDIR environment variable or

-coredir flag as described in “Multi-task corefile” on page 53.

Note: By setting -coredir or MP_COREDIR to none you can bypass saving

lightweight corefiles in a new subdirectory, and have them saved in /tmp

instead.

In addition to developing the LCF standard, the Parallel Tools Consortium has also

created command line and graphical user interface tools (not distributed by IBM)

that you can use to analyze lightweight corefiles. To use these tools, you will first

want to merge the separate lightweight corefiles into a single file — with each

separate lightweight corefile’s information appended, one after another, into the

single lightweight corefile. To merge the separate lightweight corefiles into a single

file, you could, for example, use the mcpgath command (as described in “mcpgath”

on page 88) or you could create and use your own script.

Note: The lightweight corefile stack traces, and, by extension, the lightweight

corefile browsers, will be able to show source code line numbers only if your

program is compiled with the -g option. Otherwise, locations will be shown

by relative address within the module. The -g flag is a standard compiler flag

that produces an object file with symbol table references. For more

information on the -g option, refer to its use on the cc command as

described in IBM AIX 5L Version 5: Commands Reference

For more information on the Standard Lightweight Corefile Format or the

Lightweight Corefile Browser (LCB) project, refer to http://www.ptools.org/projects/
lcb on the World Wide Web. For information about the Parallel Tools Consortium,

refer to http://www.ptools.org on the World Wide Web.

Managing large memory parallel jobs

If you submit a job that requires a large amount of paging space, but did not

compile it to use large pages, the result can be node instability or even system

failure. To avoid these conditions, you can use the MP_TLP_REQUIRED

environment variable (or -tlp_required command line flag) to appropriately respond

to jobs that were not compiled for large pages. When you set MP_TLP_REQUIRED

to warn, POE detects and issues a warning message for any job that was not

compiled for large pages. Setting MP_TLP_REQUIRED to kill causes POE to detect

and kill any job that was not compiled for large pages. For more information, see

Appendix B, “POE Environment variables and command line flags,” on page 141.

Stopping a POE job

You can stop (suspend) an interactive POE job by pressing <Ctrl-z> or by sending

POE a SIGTSTP signal. POE stops, and sends a SIGSTOP signal to all the remote

tasks, which stops them. To resume the parallel job, issue the fg or bg command to

POE. A SIGCONT signal will be sent to all the remote tasks to resume them.

Chapter 3. Managing POE jobs 61

|

|
|
|
|
|
|
|
|
|

Cancelling and killing a POE job

You can cancel a POE job by pressing <Ctrl-c> or <Ctrl-\>. This sends POE a

SIGINT or SIGQUIT signal respectively. POE terminates all the remote tasks and

exits.

If POE on the home node is killed or terminated before the remote nodes are shut

down, direct communication with the parallel job will be lost. In this situation, use

the poekill script as a POE command, or individually via rsh, to terminate the

partition. poekill kills all instantiations of the program name on a remote node by

sending it a SIGTERM signal. See the poekill script in /usr/lpp/ppe.poe/bin, and the

description of the poekill command in Appendix A, “Parallel Environment

commands,” on page 85.

Note: Do not kill the pmds using the poekill command. Doing so will prevent your

remote processes from completing normally.

Detecting remote node failures

POE and the Partition Manager use a pulse detection mechanism to periodically

check each remote node to ensure that it is actively communicating with the home

node. You specify the time interval (or pulse interval), of these checks with the

-pulse flag or the MP_PULSE environment variable. During an execution of a POE

job, POE and the Partition Manager daemons check at the interval you specify that

each node is running. When a node failure is detected, POE terminates the job on

all remaining nodes and issues an error message.

The default pulse interval is 600 seconds (10 minutes). You can increase or

decrease this value with the -pulse flag or the MP_PULSE environment variable. To

completely disable the pulse function, specify an interval value of 0 (zero). For the

PE debugging facility MP_PULSE is disabled.

Considerations for using the high performance switch interconnect

The high performance switch supports dedicated User Space (US) and IP sessions,

running concurrently on a single node. Users of IP communication programs that

are not using LoadLeveler may treat these adapters like any other IP-supporting

adapter.

While User Space message passing programs must use LoadLeveler to allocate

nodes, IP message passing programs may use LoadLeveler, but are not required

to. When using LoadLeveler, nodes may be requested by name or number from

one system pool only. When specifying node pools, the following rules apply:

v All the nodes in a pool should support the same combination of IP and User

Space protocols. In other words, all the nodes should be able to run:

– the IP protocol

or

– the User Space protocol

or

– the IP and User Space protocols concurrently.

v In order to run the IP protocol, the IP switch addresses must be configured and

started. For more information regarding these protocols and LoadLeveler, see

Tivoli Workload Scheduler LoadLeveler: Using and Administering for more

information.

62 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

v By default, pool requests for the User Space message passing protocol also

request exclusive use of the node(s). As long as a node was allocated through a

pool request (and not through a specific node request), LoadLeveler will not

allocate concurrent IP message passing programs on the node. You can override

this default so that the node can be used for both IP and User Space programs

by specifying “multiple” CPU usage.

v By default, requests for the IP message passing protocol also request multiple

use of the node; LoadLeveler can allocate both IP and User Space message

passing programs on this node. You can override this default so that the node is

designated for exclusive use by specifying “unique” CPU usage.

v When running a batch parallel program under LoadLeveler, the adapter and CPU

are allocated as specified by the network keyword in the LoadLeveler Job

Command File, which can also include the specifications for multiple adapters

and striping. See Tivoli Workload Scheduler LoadLeveler: Using and

Administering for more information.

Scenario 1: Explicitly allocating nodes with TWS LoadLeveler

A POE user, Paul, wishes to run a User Space job 1 in nodes A, B, C, and D. He

doesn’t mind sharing the node with other jobs, as long as they are not also running

in US. To do this, he specifies MP_EUIDEVICE=css0, MP_EUILIB=us,

MP_PROCS=4, MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In

his host file, he also specifies:

node_A

node_B

node_C

node_D

The POE Partition Manager (PM) sees that this is a User Space job, and asks

LoadLeveler for dedicated use of the adapter on nodes A, B, C, and D and shared

use of the CPU on those nodes. LoadLeveler then allocates the nodes to the job,

recording that the css0/US session on A, B, C, and D has been reserved for

dedicated use by this job, but that the node may also be shared by other users.

While job 1 is running, another POE user, Dan, wants to run another User Space

job, job 2, on nodes B and C, and is willing to share the nodes with other users. He

specifies MP_EUIDEVICE=css0, MP_EUILIB=us, and MP_PROCS=2,

MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In his host file, he

also specifies:

node_B

node_C

The PM, as before, asks LoadLeveler for dedicated use of the adapter on nodes B

and C. LoadLeveler determines that this adapter has already been reserved for

dedicated use on nodes B and C, and does not allocate the nodes again to job 2.

The allocation fails, and POE job 2 cannot run.

While job 1 is running, a second POE user, John, wishes to run IP/switch job 3 on

nodes A, B, C, and D, but doesn’t mind sharing the node and the high performance

switch with other users. He specifies MP_EUIDEVICE=css0, MP_EUILIB=ip,

MP_PROCS=4, MP_CPU_USE=multiple, and MP_ADAPTER_USE=shared. In his

host file, he also specifies;

Chapter 3. Managing POE jobs 63

node_A

node_B

node_C

node_D

The POE PM asks LoadLeveler, as requested by John, for shared use of the

adapter and CPU on nodes A, B, C, and D. LoadLeveler determines that job 1

permitted other jobs to run on those nodes as long as they did not use thecss0/US

session on them. The allocation succeeds, and POE IP/switch job 3 runs

concurrently with POE User Space job 1 on A, B, C, and D.

The scenario above, illustrates a situation in which users do not mind sharing nodes

with other users’ jobs. If a user wants his POE job to have dedicated access to

nodes or the adapter, he would indicate that in the environment by setting

MP_CPU_USE=unique instead of multiple. If job 1 had done that, then job 3 would

not have been allocated to those nodes and, therefore, would not have been able to

run.

Scenario 2: Implicitly allocating nodes with TWS LoadLeveler

In this scenario, all nodes have both css0/US and css0/ip sessions configured, and

are assigned to pool 2.

In this example, we have eight nodes; A, B, C, D, E, F, G, H.

Job 1: Job1 is interactive, and requests 4 nodes for User Space using

MP_RMPOOL.

MP_PROCS=4

MP_RMPOOL=2

MP_EUILIB=us

LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US)

and dedicated CPU (default for MP_RMPOOL).

Job 2: Job 2 is interactive, and requests six nodes for User Space using host.list.

MP_PROCS=6

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=shared

host.list

 @2

POE forces the adapter request to be dedicated, even though the user specified

shared. Multiple (shared CPU) is supported, but in this case LoadLeveler doesn’t

have six nodes, either for CPU or for adapter, so the job fails.

Job 3: Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

64 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

MP_PROCS=6

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU, but LoadLeveler only has four

nodes available for CPU use, so the job fails.

Job 4: Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

MP_PROCS=3

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU. LoadLeveler allocates nodes E,

F, and G.

Job 5: Job 5 is interactive and requests two nodes for IP using MP_RMPOOL.

MP_PROCS=2

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU. LoadLeveler allocates two nodes

from the list E, F, G, H (the others are assigned as dedicated to job 1).

Scenario 3: Implicitly allocating nodes with TWS LoadLeveler (mixing

dedicated and shared adapters)

In this scenario, all nodes have both css0/US and css0/ip sessions configured, and

are assigned to pool 2.

In this example, we have eight nodes; A, B, C, D, E, F, G, H

Job 1: Job 1 is interactive and requests four nodes for User Space using host.list.

MP_PROCS=4

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=dedicated

host.list

 @2

LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US),

and shared CPU.

Job 2: Job 2 is interactive and requests six nodes for User Space using host.list.

Chapter 3. Managing POE jobs 65

MP_PROCS=6

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=shared

host.list

 @2

POE forces the adapter request to be dedicated, even though the user has

specified shared. Multiple (shared CPU) is supported, but in this case, LoadLeveler

doesn’t have six nodes for the adapter request, so the job fails.

Job 3: Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

MP_PROCS=6

MP_HOSTFILE=NULL

MP_EUILIB=ip

MP_RMPOOL=2

The defaults are shared adapter and shared CPU. LoadLeveler allocates six nodes

for IP from the pool.

Job 4: Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

MP_PROCS=3

MP_HOSTFILE=NULL

MP_EUILIB=ip

MP_RMPOOL=2

The defaults are shared adapter and shared CPU. LoadLeveler allocates three

nodes from the pool.

Considerations for data striping, failover and recovery with PE

PE MPI depends on LAPI as a lower level protocol and the support for striping is

entirely within the LAPI layer. In most cases, the layering of PE MPI on LAPI is

transparent to the MPI user. Striping is the distribution of message data across

multiple communication adapters in order to increase bandwidth. By using striping

in conjunction with the bulk transfer transport mechanism, applications can

experience gains in communication bandwidth performance. Applications that do not

use the bulk transfer communication mode typically cannot benefit from striping

over multiple adapters.

LAPI also provides facilities for higher availability and recovery from link and

adapter failures. LAPI can quickly determine when an adapter no longer has the

ability to communicate, and as a result will fail over and recover all communication

on an alternate path. Note, however, that failover and recovery are only supported

with running over the User Space protocol, and when running jobs across multiple

networks.

66 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

In this case, though the striping implementation is within LAPI, it has implications

that affect PE MPI users. These instructions are LAPI-oriented, but are included

here to provide information you may find valuable. If you are interested in more

specific details about striping or failover and recovery operations, refer to RSCT:

LAPI Programming Guide.

Failover and recovery

LAPI’s failover and recovery function consists of two elements:

1. Monitoring and receiving notification about the communication status of pSeries

HPS adapters. This element depends on the group services component of

RSCT and a component of LAPI called the Network Availability Matrix (NAM).

2. The use of multiple pSeries HPS adapters for redundancy, to enable failover.

Failover and recovery cannot be provided for a job if either of these elements is

absent.

Adapter status

Adapter status monitoring depends on NAM and group services, as follows.

The Network Availability Matrix (NAM) is a pseudo-device component that is

packaged as part of LAPI. To make use of LAPI’s failover and recovery function, the

NAM pseudo-device must be Available on all of the nodes that are running your job

tasks. For more specific information on installing and setting up NAM, refer to

RSCT: LAPI Programming Guide.

The RSCT group services component updates adapter status in the NAMs of the

nodes within a given peer domain. In order for LAPI failover and recovery to be

possible for a given job, job tasks must all run on nodes that belong to the same

peer domain. Preferably, all of the nodes in the system must be configured as part

of a single RSCT peer domain. For information about setting up an RSCT peer

domain, see RSCT: Administration Guide.

Requesting the use of multiple adapters

You can use POE environment variables or LoadLeveler job control file (JCF)

keywords to request the use of multiple adapters.

Using POE environment variables: In order for there to be sufficient redundancy

to handle at least one adapter failure, each task of the job needs to be allocated

communication instances across at least two different pSeries HPS adapters. An

instance is an entity that is required for communication over an adapter device. In

the user space (US) communication mode, which is specified by setting

MP_EUILIB=us, an instance corresponds to an adapter window. On the other hand,

in the IP communication mode, which is specified by setting MP_EUILIB=ip, an

instance corresponds to the IP address of a given adapter to be used for

communication.

Depending on the number of networks in the system and the number of adapters

each node has on each of the networks, you can request the allocation of multiple

instances for your job tasks by using a combination of the POE environment

variables MP_EUIDEVICE and MP_INSTANCES. The distribution of these

requested instances among the various pSeries HPS adapters on the nodes is

done by LoadLeveler. Depending on whether the job is using user space or IP, and

on the resources available on each of the adapters, LoadLeveler will try to allocate

these instances on different adapters.

Chapter 3. Managing POE jobs 67

To request the use of multiple instances on a system where all nodes have

adapters on each of the n networks in the system, you can set MP_EUIDEVICE to

the value sn_all. This setting translates to a request for the default number of

instances (1) from adapters on each of the networks in the system, and a request

for a total of n instances for each of the job tasks. You do not have to set the

MP_INSTANCES environment variable. If MP_EUIDEVICE is set to sn_all and you

do set the MP_INSTANCES variable to a value m (where m is a number from 1

through the value of the case-insensitive string max), this translates to a request of

m instances from each of the networks in the system for each job task. For user

space, this corresponds to a request for (m * n) different windows for each job task.

For IP, this corresponds to a request for the same number of pSeries HPS IP

devices.

You must take the following considerations into account while defining the number

of instances to use and the value specified for MP_EUIDEVICE:

v If m is greater than the number of adapters a node has on one of the networks,

multiple windows will be allocated from some of the adapters. For IP, the same

adapter device will be allocated multiple times.

v LoadLeveler translates the value max as a request to allocate the number of

instances (as specified by the max_protocol_instances variable) that are defined

for this job class in the LoadLeveler LoadL_admin file. See Tivoli Workload

Scheduler LoadLeveler: Using and Administering for more information. If you

request more instances than the value of max_protocol_instances, LoadLeveler

allocates a number of instances that is equal to the value of

max_protocol_instances. To have your job use all adapters on the system across

all the networks, you can have the administrator set max_protocol_instances for

your job class to the number of adapters each node has on each network

(assuming that each node has the same number of adapters on each network),

and then run your job with MP_EUIDEVICE=sn_all and MP_INSTANCES=max.

v On a system where every node is connected to more than one common network,

setting MP_EUIDEVICE=sn_all is sufficient to allocate instances from distinct

adapters for all job tasks. You do not need to set MP_INSTANCES. This is

because an adapter is connected to exactly one network, this is a request for

instances from each network, and if the request is satisfied, at least two distinct

adapters have been allocated for each of the job tasks. In the case of user

space, if all windows on the adapters of one or more networks are all used up,

the job will not be scheduled until windows are available on adapters of each

network.

To request the use of multiple instances on a system where all nodes are

connected to a single pSeries HPS , or where nodes are connected to multiple

networks, but you want your tasks to use adapters that are connected to only one

of those networks, you can set MP_EUIDEVICE=sn_single and

MP_INSTANCES=m, where m is a number from 1 through the value of the

(case-insensitive) string max. This translates to a request for m instances on one

network only; not, as in the previous case, on each of the n networks in the system.

With such a request, if MP_EUILIB=us, it is not guaranteed that LoadLeveler will

allocate the multiple windows from distinct adapters if window resources on some of

the adapters are all used up by previously-scheduled jobs. In this scenario,

LoadLeveler may allocate the multiple windows all from a single adapter and one or

more of the job tasks will be without a redundant adapter to fail over to in the case

of a communication problem. Thus, the only guaranteed way to get multiple

adapters allocated to the job to satisfy the basic requirements for LAPI’s failover

and recovery function, is to have the nodes in the system connect to multiple

pSeries HPS and setting MP_EUIDEVICE=sn_all.

68 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

POE will post an attention message stating that failover and recovery operations

may not be possible for the job if multiple instances are requested, but one or more

job tasks are allocated instances that are all from the same adapter. Table 45

shows the interaction among the values of MP_INSTANCES, MP_EUIDEVICE, and

MP_EUILIB, in terms of the total instances that are allocated to every task of the

job, and whether use of the failover and recovery function is possible as a result.

 Table 45. Failover and recovery operations

MP_EUIDEVICE=

Instances allocated per task with

MP_EUILIB=us

Instances allocated per task with

MP_EUILIB=ip

MP_INSTANCES is

not set

MP_INSTANCES=m MP_INSTANCES is

not set

MP_INSTANCES=m

sn_single 1

no failover

m

failover may not be

possible

1

no failover

m

failover is possible if

num_adapters per

network > 1

sn_all num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

Using Tivoli Workload Scheduler LoadLeveler JCF keywords: The use of the

LoadLeveler job class attribute max_protocol_instances is described in “Using POE

environment variables” on page 67. For more information about this attribute, and

for the syntax to specify the request for multiple instances on a single network or on

all networks in the system using a LoadLeveler job control file (JCF), see Tivoli

Workload Scheduler LoadLeveler: Using and Administering.

Failover and recovery restrictions

v Requesting the use of multiple instances for tasks of the job is for

failover/recovery and load balancing among multiple networks only. No

performance gain in terms of individual task bandwidth should be expected due

to the use of multiple instances.

v Although more than eight instances are allowed using a combination of

LoadLeveler’s max_protocol_instances setting and the MP_INSTANCES

environment variable, LAPI ignores all window allocations beyond the first eight,

because LAPI supports a maximum of eight adapters per operating system

instance and the best performance can be obtained with one window on each of

them. Using multiple windows on a given adapter provides no performance

advantage.

v When a job with a failed adapter is preempted, LoadLeveler may not be able to

continue with the job if it (LoadLeveler) cannot reload the switch table on the

failed adapter. Any adapter failure that causes switch tables to be unloaded will

not be recovered during the job run.

v In single-network scenarios, LoadLeveler attempts to allocate adapter windows

on separate adapters, but does not always succeed. Correspondingly, failover

and recovery are not always possible in single-network scenarios. The user will

get POE attention messages at job startup time when LoadLeveler fails to get

windows on at least two separate adapters.

v Failover and recovery are only supported on snX adapters. Failover and recovery

are not supported for standalone (non-POE) LAPI.

Chapter 3. Managing POE jobs 69

|

Data striping

When running parallel jobs on processors with pSeries High Performance Switches,

it is possible to stripe data through multiple adapter windows. This is supported for

both IP and User Space protocols.

If the system has more than one switch network, the resource manager allocates

adapter windows from multiple adapters. A switch network is the circuit of adapters

that connect to the same pSeries HPS. One window is assigned to an adapter, with

one adapter each selected from a different switch network.

If the system has only one switch network, the adapter windows are most likely

allocated from different adapters, provided that there are sufficient windows

available on each adapter. If there are not enough windows available on one of the

adapters, the adapter windows may all be allocated from a single adapter.

LAPI manages communication among multiple adapter windows. Using resources

that LoadLeveler allocates, LAPI opens multiple user space windows for

communication. Every task of the job opens the same number of user space

windows, and a particular window on a task can only communicate with the

corresponding window on other tasks. These windows form a set of ″virtual

networks″, in which each ″virtual network″ consists of a window from each task that

can communicate with the corresponding windows from the other tasks. The

distribution of data among the various windows on a task is referred to as striping,

which has the potential to improve communication bandwidth performance for LAPI

clients.

To enable striping in user space mode, use environment variable settings that result

in the allocation of multiple instances. For a multi-network system, this can be done

by setting MP_EUIDEVICE to sn_all. On a single-network system with multiple

adapters per operating system image, this can be done by setting MP_EUIDEVICE

to sn_single and setting MP_INSTANCES to a value that is greater than 1.

For example, on a node with two adapter links, in a configuration where each link is

part of a separate network, the result is a window on each of the two networks,

which are independent paths from one node to others. For IP communication and

for messages that use the user space FIFO mechanism (in which LAPI creates

packets and copies them to the user space FIFOs for transmission), striping

provides no performance improvement. Therefore, LAPI does not perform striping

for short messages, noncontiguous messages, and all communication in which bulk

transfer is disabled through environment variable settings.

For large contiguous messages that use bulk transfer, striping provides a vast

improvement in communication performance. Bandwidth scaling is nearly linear with

the number of adapters (up to a limit of 8) for sufficiently-large messages. This

improvement in communication bandwidth stems from: 1) the low overhead needed

to initiate the remote direct memory access (RDMA) operations used to facilitate the

bulk transfer, 2) the major proportion of RDMA work being done by the adapters,

and 3) high levels of concurrency in the RDMA operations for various parts of the

contiguous messages that are being transferred by RDMA by each of the adapters.

To activate striping or failover for an interactive parallel job, you must set the

MP_EUIDEVICE and MP_INSTANCES environment variables as follows:

v — Guarantees that the adapters assigned will be from different networks.

v For a single network:

70 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

MP_EUIDEVICE=sn_single and MP_INSTANCES=n (where n is greater than 1

and less than max_protocol_instances) — Improved striping performance using

RDMA can only be seen if windows are allocated from multiple adapters on the

single network. Such an allocation may not be possible if there is only one

adapter on the network or if there are multiple adapters, but there are available

resources on only one of the adapters.

To activate striping for a parallel job submitted to the LoadLeveler batch system, the

network statement of the LoadLeveler command file must be coded accordingly.

v Use this network statement for a LAPI User Space job that uses pSeries High

Performance Switches on multiple networks:

#@ network.lapi = sn_all,shared,us

v Use this network statement for an MPI and LAPI User Space job that uses

pSeries High Performance Switches on multiple networks and shares adapter

windows:

#@ network.mpi_lapi = sn_all,shared,us

The value of MP_INSTANCES ranges from 1 to the maximum value specified by

max_protocol_instances, as defined in the LoadLeveler LoadL_admin file. The

default value of max_protocol_instances is 1. See Tivoli Workload Scheduler

LoadLeveler: Using and Administering for more information.

Communication and memory considerations

Depending on the mode of communication, when multiple pSeries HPS adapters

are used for data striping or for failover and recovery, additional memory or address

space resources are used for data structures that are associated with each

communication instance. In 32-bit applications, these additional requirements have

implications that you must consider before deciding whether to use striping or

failover and recovery and the extent to which you will use these functions.

IP communication: When multiple pSeries HPS instances are used for IP

communication, LAPI allocates these data structures from the user heap. Some

32-bit applications may therefore need to be recompiled to use additional data

segments for their heap by using the -bmaxdata compilation flag and requesting a

larger number of segments. The default amount of data that can be allocated for

64-bit programs is practically unlimited, so no changes are needed. Alternatively,

you can modify the 32-bit executable using the ldedit command or by setting the

LDR_CNTRL environment variable to MAXDATA. Base the increase to -bmaxdata

on what is needed rather than setting it to the maximum allowed (0x80000000).

Using more segments than required may make certain shared memory features

unusable, which can result in poor performance. Also, applications that require the

eight allowed segments for their own user data (thus leaving no space for LAPI to

allocate structures) must use a single IP instance only

(MP_EUIDEVICE=sn_single).

For more information about ldedit, see IBM AIX 5L Version 5.3 Commands

Reference. For more information about LDR_CNTRL, see IBM AIX 5L Version 5.3

Performance Management Guide.

US communication: When multiple pSeries HPS instances are used for User

Space communication, you need to consider the following segment usage

information when deciding whether to use striping or failover and recovery. The

communication subsystem uses segment registers for several different purposes.

The AIX memory model for 32-bit applications uses five segment registers. In a

32-bit executable, there are only 16 segment registers available. In a 64-bit

Chapter 3. Managing POE jobs 71

|
|
|

executable, the number of segment registers is essentially unbounded. Because

segment registers are abundant in 64-bit job runs, this discussion is important only

for 32-bit job runs.

By default, the amount of memory that is available for application data structures

(the heap) in a 32-bit job run is somewhat less than 256MB. You can use the

compilation flag -bmaxdata:0x80000000 to allocate 2GB of heap, but this requires

eight segment registers. Smaller -bmaxdata values use fewer segment registers,

but these values limit the size of application data structures. If you try to use every

available feature of the communication subsystem and allow 2GB for heap, there

will not be enough registers, and your application will lose some performance or

perhaps not be able to start. The communication subsystem uses segments as

follows:

v One User Space instance (window): 2

v Each additional instance: 1

v Switch clock: 1

v Shared memory: 1

v Shared memory cross-memory attach: 1

Using MPI and LAPI together with separate windows consumes segments beyond

the minimum. Using striping also consumes extra windows. Access to the switch

clock for the MPI_WTIME_IS_GLOBAL attribute requires a segment register.

Turning on MP_SHARED_MEMORY requires one segment register for basic

functions and a second segment register to exploit cross-memory attach, to

accelerate large messages between tasks on the same node. If your application

requires a large heap, you may need to forgo some communication subsystem

options. For most applications, you can set MP_CLOCK_SOURCE=AIX and free

one register. If MPI and LAPI calls are used in the application, make sure

MP_MSG_API is set to MPI_LAPI rather than MPI,LAPI. Because shared memory

uses one pair of registers per protocol, using MPI_LAPI rather than MPI,LAPI is

especially important when combining shared memory and user space. If you do not

need to use the striping and failover functions, make sure that MP_EUIDEVICE is

set to sn_single and that MP_INSTANCES is not set (in which case, it defaults to

1) or is set to 1 explicitly.

For 32-bit executables that are compiled to use small pages, the segment registers

that are reserved by AIX and by -bmaxdata are claimed first. The initialization of

user space comes second. If there are not enough registers left, your job will not

start. The initialization of shared memory comes last. If there are no registers left,

the job will still run, but without shared memory. If there is only one register left,

shared memory will be enabled, but the optimization to speed large messages with

cross-memory attach will not be used. If there are no registers left, shared memory

will be bypassed and on-node communication will go through the network.

For 32-bit executables that use large pages, dynamic segment allocation (DSA) is

turned on automatically, so any -bmaxdata segments requested are not reserved

first for the user heap, but are instead allocated in the order of usage. Thus, if the

program allocates memory corresponding to the total size of the requested

-bmaxdata segments before MPI_Init or LAPI_Init is called, the behavior would be

similar to the small page behavior that is described in the previous paragraph.

However, if MPI_Init or LAPI_Init is called before the memory allocation, segments

that were intended for use for the program heap may be first obtained and reserved

for windows and for communication library features such as shared memory. In this

case, the program will be left with fewer segments to grow the heap than

-bmaxdata had requested. The program is likely to start by claiming all the

72 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

segments required for the initialization of the communication subsystem, but will

terminate later in the job run on a malloc failure as its data structure allocations

grow to fill the space that the specified -bmaxdata value was expected to provide.

For information about how to use large pages, see IBM AIX 5L Version 5.3

Performance Management Guide. For information about DSA, see IBM AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Submitting a batch POE job using TWS LoadLeveler

To submit a batch POE job using LoadLeveler, you need to build a LoadLeveler job

file, which specifies:

v The number of nodes to be allocated

v Any POE options, passed via environment variables using LoadLeveler’s

environment keyword, or passed as command line options using LoadLeveler’s

argument keyword.

v The path to your POE executable (usually /usr/bin/poe).

v Adapter specifications using the network keyword.

The following POE environment variables, or associated command line options, are

validated, but not used, for batch jobs submitted using LoadLeveler.

v MP_PROCS

v MP_RMPOOL

v MP_EUIDEVICE

v MP_EUILIB

v MP_MSG_API (except for programs that use LAPI and also use the LoadLeveler

requirements keyword to specify Adapter=″hps_user″)

v MP_HOSTFILE

v MP_SAVEHOSTFILE

v MP_RESD

v MP_RETRY

v MP_RETRYCOUNT

v MP_ADAPTER_USE

v MP_CPU_USE

v MP_NODES

v MP_TASKS_PER_NODE

v MP_INSTANCES

v MP_USE_BULK_XFER

v MP_RDMA_COUNT

v MP_TASK_AFFINITY

To run myprog on five nodes, using a Token ring adapter for IP message passing,

with the message level set to the info threshold, you could use the following

LoadLeveler job file. The arguments myarg1 and myarg2 are to be passed to

myprog.

#!/bin/ksh

@ input = myjob.in

@ output = myjob.out

@ error = myjob.error

@ environment = COPY_ALL; \

 MP_EUILIB=ip; \

Chapter 3. Managing POE jobs 73

|
|
|

MP_INFO_LEVEL=2

@ executable = /usr/bin/poe

@ arguments = myprog myarg1 myarg2

@ min_processors = 5

@ requirements = (Adapter == "tokenring")

@ job_type = parallel

To run myprog on 12 nodes from pool 2, using the User Space message passing

interface with the message threshold set to attention, you could use the following

LoadLeveler job file. See the documentation provided with the LoadLeveler program

product for more information.

#!/bin/ksh

@ input = myusjob.in

@ output = myusjob.out

@ error = myusjob.error

@ environment = COPY_ALL; MP_EUILIB=us

@ executable = /usr/bin/poe

@ arguments = myprog -infolevel 1

@ min_processors = 12

@ requirements = (Pool == 2) && (Adapter == "hps_user")

@ job_type = parallel

@ checkpoint = no

Notes:

1. The first token of the arguments string in the LoadLeveler job file must be the

name of the program to be run under POE, unless:

v You use the MP_CMDFILE environment variable or the -cmdfile command

line option

v The file you specify with the keyword input contains the name(s) of the

programs to be run under POE.

2. When setting the environment string, make sure that no white space characters

follow the backslash, and that there is a space between the semicolon and

backslash.

3. When LoadLeveler allocates nodes for parallel execution, POE and task 0 will

be executed on the same node.

4. When LoadLeveler detects a condition that should terminate the parallel job, a

SIGTERM will be sent to POE. POE will then send the SIGTERM to each

parallel task in the partition. If this signal is caught or ignored by a parallel task,

LoadLeveler will ultimately terminate the task.

5. Programs that call the usrinfo function with the getinfo parameter, or programs

that use the getinfo function, are not guaranteed to receive correct information

about the owner of the current process.

74 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

6. Programs that use LAPI and also the LoadLeveler requirements keyword to

specify Adapter=″hps_user″, must set the MP_MSG_API environment variable

or associated command line option accordingly.

7. If the value of the MP_EUILIB, MP_EUIDEVICE, or MP_MSG_API environment

variable that is passed as an argument to POE differs from the specification in

the network statement of the job command file, the network specification will be

used, and an attention message will be printed.

For more information, refer to Tivoli Workload Scheduler LoadLeveler: Using and

Administering.

Submitting an interactive POE job using a TWS LoadLeveler command

file

POE users may specify a LoadLeveler job command file to be used for an

interactive job. Using a LoadLeveler job command file provides the capability to:

v Exploit new or existing LoadLeveler functionality that is not available using POE

options. This includes specification of:

– task geometry

– blocking factor

– machine order

– consumable resources

– memory requirements

– disk space requirements

– machine architecture

For more information on the LoadLeveler functionality you can exploit, refer to

For more information, see Tivoli Workload Scheduler LoadLeveler: Using and

Administering

v Run parallel jobs without specifying a host file or pool, thereby causing

LoadLeveler to select nodes for the parallel job from any in its cluster.

v Specify that a job should run from more than 1 pool.

You can use a LoadLeveler job command file with or without a host list file. If you

have created a LoadLeveler job command file for node allocation (either

independently or in conjunction with a host list file), you need to set the MP_LLFILE

environment variable (or use the -llfile flag when invoking the program) to specify

the file. You can specify the LoadLeveler job command file using its relative or full

path name.

Table 46 describes how to set the MP_LLFILE environment variable and the -llfile

command line flag.

For example, say the LoadLeveler job command file is named file.cmd and is

located in the directory /u/dlecker. You could:

 Table 46. Example of setting the MP_LLFILE environment variable or -llfile command line flag

Set the MP_LLFILE environment variable: Use the -llfile flag when invoking the program:

ENTER export MP_LLFILE=/u/dlecker/file.cmd ENTER poe program -llfile /u/dlecker/file.cmd

When the MP_LLFILE environment variable, or the -llfile command line option is

used, the following POE node/adapter specifications are ignored.

Chapter 3. Managing POE jobs 75

|
|

|

v MP_RMPOOL

v MP_EUIDEVICE

v MP_EUILIB

v MP_RESD

v MP_MSG_API

v MP_ADAPTER_USE

v MP_CPU_USE

v MP_NODES

v MP_TASKS_PER_NODE

v MP_PROCS (when a host list file is not used.)

v MP_INSTANCES

v MP_USE_BULK_XFER

v MP_RDMA_COUNT

v MP_TASK_AFFINITY

Note also that if the LoadLeveler job command file contains the #@environment

keyword, none of the environment variable settings within that string will have an

effect on the POE or remote task environments.

When using this option, the following restrictions apply.

v Cannot be used for batch POE jobs.

v The host list file cannot contain pool requests.

v The MP_PROCS environment variable or the -procs command line flag must be

used if a host list file is used, otherwise only 1 parallel task will be run on the first

host listed in the host list file.

v Certain LoadLeveler keywords are not allowed in the LoadLeveler job command

file when it is being used for an interactive POE job. For more information, see

Tivoli Workload Scheduler LoadLeveler: Using and Administering for a listing of

these keywords.

Generating an output TWS LoadLeveler job command file

When using LoadLeveler for submitting an interactive job, you can, provided you

are not already using a LoadLeveler job command file, generate an output

LoadLeveler job command file. This output LoadLeveler job command file contains

the LoadLeveler settings that result from the environment variables and/or

command line options for the current invocation of POE. If you are unfamiliar with

LoadLeveler and its job command files, this provides an easy starting point for

creating LoadLeveler job command files. Once you create an output LoadLeveler

job command file, you can then, for subsequent submissions, modify it to contain

additional LoadLeveler specifications (such as new LoadLeveler functionality

available only through using a LoadLeveler job command file).

Be aware that you cannot generate a LoadLeveler job command file if you are

already using one; in other words, if the MP_LLFILE environment variable or the

-llfile command line flag is used. You also cannot generate an output LoadLeveler

job command file if you are submitting a batch job.

To generate a LoadLeveler job command file, you can use the MP_SAVE_LLFILE

environment variable to specify the name that the output LoadLeveler job command

file should be saved as. You can specify the output LoadLeveler job command file

name using a relative or full path name. As with most POE environment variables,

76 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

you can temporarily override the value of MP_SAVE_LLFILE using its associated

command line flag -save_llfile. Table 47 describes how to set the

MP_SAVE_LLFILE environment variable and the -save_llfile command line flag.

For example, to save the output LoadLeveler job command file as file.cmd in the

directory /u/wlobb, you could:

 Table 47. Example of setting the MP_SAVE_LLFILE environment variable or -save_llfile command line flag

Set the MP_SAVE_LLFILE environment variable: Use the -save_llfile flag when invoking the program:

ENTER export MP_SAVE_LLFILE=/u/wlobb/file.cmd ENTER poe program -save_llfile /u/wlobb/file.cmd

Running programs under the C shell

During normal configuration, the Automount Daemon (amd) is used to mount user

directories. amd’s maps use the symbolic file system links, rather than the physical

file system links. While the Korn shell keeps track of file system changes, so that a

directory is always available, this mapping does not take place in the C shell. This

is because the C shell only maintains the physical file system links. As a result,

users that run POE from a C shell may find that their current directory (for example

/a/moms/fileserver/sis), is not known to amd, and POE fails with message

0031-214 (unable to change directory).

By default, POE uses the Korn shell pwd command to obtain the name of the

current directory. This works for C shell users if the current directory is either:

v The home directory

v Not mounted by amd.

If neither of the above are true (for example, if the user’s current directory is a

subdirectory of the home directory), then POE provides another mechanism to

determine the correct amd name; the MP_REMOTEDIR environment variable.

POE recognizes the MP_REMOTEDIR environment variable as the name of a

command or Korn shell script that echoes a fully-qualified file name.

MP_REMOTEDIR is run from the current directory from which POE is started.

If you do not set MP_REMOTEDIR, the command defaults to pwd, and is run as

ksh -c pwd. POE sends the output of this command to the remote nodes and uses

it as the current directory name.

You can set MP_REMOTEDIR to some other value and then export it. For example,

if you set MP_REMOTEDIR=″echo /tmp″, the current directory on the remote

nodes becomes /tmp on that node, regardless of what it is on the home node.

The script mpamddir is also provided in /usr/lpp/ppe.poe/bin, and the setting

MP_REMOTEDIR=mpamddir will run it. This script determines whether or not the

current directory is a mounted file system. If it is, the script searches the amd maps

for this directory, and constructs a name for the directory that is known to amd. You

can modify this script or create additional ones that apply to your installation.

Note: Programs that depend upon the name of the current directory for correct

operation may not function properly with an alternate directory name. In this

case, you should carefully evaluate how to provide an appropriate name for

the current directory on the home nodes.

Chapter 3. Managing POE jobs 77

|
|

|

|
|

If you are executing from a subdirectory of your home directory, and your home

directory is a mounted file system, it may be sufficient to replace the C shell name

of the mounted file system with the contents of $HOME. One approach would be:

export MP_REMOTEDIR=pwd.csh

or for C shell users:

setenv MP_REMOTEDIR pwd.csh

where the file pwd.csh is:

#!/bin/csh -fe

save the current working directory name

set oldpwd =)pwd)

get the name of the home directory

cd $HOME

set hmpwd =)pwd)

replace the home directory prefix with the contents of $HOME

set sed_home =)echo $HOME | sed ’s/\//\\\//g’)

set sed_hmpwd =)echo $hmpwd | sed ’s/\//\\\//g’)

set newpwd =)echo $oldpwd | sed "s/$sed_hmpwd/$sed_home/")

echo the result to be used by amd

echo $newpwd

Parallel file copy utilities

During the course of developing and running parallel applications on numerous

nodes, the potential need exists to efficiently copy data and files to and from a

number of places. POE provides three utilities for this reason:

1. mcp - to copy a single file from the home node to a number of remote nodes.

This was discussed briefly in “Step 2: Copy files to individual nodes” on page 9.

2. mcpscat - to copy a number of files from task 0 and scatter them in sequence

to all tasks, in a round robin order.

3. mcpgath - to copy (or gather) a number of files from all tasks back to task 0.

mcp is for copying the same file to all tasks. The input file must reside on task 0.

You can copy it to a new name on the other tasks, or to a directory. It accepts the

source file name and a destination file name or directory, in addition to any POE

command line argument, as input parameters.

mcpscat is intended for distributing a number of files in sequence to a series of

tasks, one at a time. It will use a round robin ordering to send the files in a one to

one correspondence to the tasks. If the number of files exceeds the number of

tasks, the remaining files are sent in another round through the tasks.

78 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

mcpgath is for when you need to copy a number of files from each of the tasks

back to a single location, task 0. The files must exist on each task. You can

optionally specify to have the task number appended to the file name when it is

copied.

Both mcpscat and mcpgath accept the source file names and a destination

directory, in addition to any POE command line argument, as input parameters. You

can specify multiple file names, a directory name (where all files in that directory,

not including subdirectories, are copied), or use wildcards to expand into a list of

files as the source. Wildcards should be enclosed in double quotes, otherwise they

will be expanded locally, which may not produce the intended file name resolution.

These utilities are actually message passing applications provided with POE. Their

syntax is described in Appendix A, “Parallel Environment commands,” on page 85.

Using RDMA

Remote Direct Memory Access (RDMA) is a mechanism which allows large

contiguous messages to be transferred while reducing the message transfer

overhead.

To use RDMA, MP_USE_BULK_XFER must be set to YES. The default is NO. Bulk

data transfer is possible only using RDMA. If necessary, MP_USE_BULK_XFER

can be overridden with the command line option, -use_bulk_xfer.

MP_RDMA_COUNT is used to specify the number of user rCxt blocks. This number

represents the total number of rCxt blocks required by the application program, by

determining the number of remote handles the program will require, divided by 128

and adding 2. MP_RDMA_COUNT supports the specification of multiple values

when multiple protocols are involved. The format can be one of the following:

v MP_RDMA_COUNT=m for a single protocol

v MP_RDMA_COUNT=m,n for multiple protocols. Only for when

MP_MSG_API=“mpi.lapi” – the values are positional, m is for MPI, n for LAPI.

Note that the MP_RDMA_COUNT/–rdma_count option signifies the number of rCxt

blocks the user has requested for the job, and LoadLeveler determines the actual

number of rCxt blocks that will be allocated for the job. POE will use the value of

MP_RDMA_COUNT to specify the number of rCxt blocks requested on the

LoadLeveler MPI and/or LAPI network information when the job is submitted. The

number of rCxt blocks will be the same for every window of the same protocol.

Applications that set MP_USE_BULK_XFER imply that RDMA will be used with a

single rCxt block (or an extra, if MP_RDMA_COUNT is set), per window. For

striping and failover, the same number of rCxt blocks are assigned to each window.

The MP_RDMA_COUNT specification only has meaning for LAPI applications.

When MP_RDMA_COUNT is specified for MPI applications (either when

MP_MSG_API is explicitly set or defaults to mpi), POE will issue a warning

message that the MP_RDMA_COUNT specification is unnecessary.

The use of the MP_RDMA_COUNT specification requires LoadLeveler 3.3.1 or

later.

Chapter 3. Managing POE jobs 79

|
|

Improving Application Scalability Performance

There are certain highly-tuned, fine-grained MPI parallel applications that may

benefit from using special tuning and dispatching capabilities provided by AIX and

Parallel Environment, particularly in system and application environments where

scalability and performance are important concerns. Two features that are available

for such applications are:

v POE priority adjustment coscheduler

v AIX Dispatcher tuner

Interaction is required on the part of the system administrator to assess the overall

need and options available through these features, and to make them available for

general users. With high-computing performance environments, there are certain

issues to be considered, based on a variety of factors, some of which may require

selecting kernel options that require a system reboot or using workload balancing to

dedicated processors for offloading critical system activity.

Users may wish to consult with their system administrator about allowing certain

options to be made available to them for their needs. Such options and factors

should be carefully weighed and evaluated when using these capabilities.

POE priority adjustment coscheduler

Certain applications can benefit from enhanced dispatching priority (coscheduling)

during execution. POE provides a service for periodically adjusting the dispatch

priority of a user’s task between set boundaries, giving the tasks improved

execution priority.

The PE coscheduler works by alternately, and synchronously, raising and lowering

the AIX dispatch priority of the tasks in an MPI job. The objective is for all the tasks

to have the same priority across all processors, and to force other system activity

into periodic and aligned time slots during which the MPI tasks do not actively

compete for CPU resources.

When the MP_PRIORITY environment variable is specified, POE attempts to use

the coscheduler to adjust the priority of the tasks, based on the values specified

and the constraints defined by the system administrator. The value of the

MP_PRIORITY environment variable can be specified in one of two forms:

v A job class, which defines the priority adjustment values

v A list of priority adjustment values, which must fall within predefined limits.

The system administrator needs to define the available constraints and values by

defining entries in the /etc/poe.priority file. Refer to IBM Parallel Environment for

AIX: Installation for specific information on defining entries in the /etc/poe.priority

file.

When you specify a job class as a value for MP_PRIORITY, the specified class

must exist in the /etc/poe.priority file on each node. POE looks in /etc/poe.priority

and finds the entry that corresponds to that class, and then uses it to determine the

priority adjustment values to be used. The class entry defines the following

parameters:

v User name. The user name can also be in the form of an asterisk (wildcard).

v Class name. When a wildcard is used, the class can be used to define a

minimum or maximum class threshold.

80 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

v High priority (more favored).

v Low priority (less favored).

v Percentage of time to run at high priority.

v Duration of adjustment cycle.

When you specify a list of values for MP_PRIORITY, you must specify the string as

a colon-separated list in the following format:

hipriority:lopriority:percentage:period

When the value of the MP_PRIORITY environment variable is specified as a list of

values, it is evaluated against the maximum and minimum settings in the

/etc/poe.priority file. The values will only take effect under the following conditions:

v When a maximum setting is specified in the file, and each value in the

environment variable is less than or equal to the corresponding value in the file.

v When a minimum setting is specified in the file, and each value in the

environment variable is greater than or equal to the corresponding value in the

file.

Refer to IBM Parallel Environment: Installation for specific and additional details on

the format and meaning of these values.

When using the coscheduler, you should also consider the following:

v The normal AIX dispatch priority is 60. If both high and low priority are set to

values less than 60, a compute-bound job will prevent other users from being

dispatched. The dispatch preference goes to the lower number.

v The high priority value must be equal to or greater than 12. If the value is

between 12 and 20, the job competes with system processes for cycles, and may

disrupt normal system activity.

v If the high priority value is less than 30, keystroke capture will be inhibited during

the high priority portion of the dispatch cycle.

v If high priority is less than 16, the job will not be subject to the AIX scheduler

during the high priority portion of the cycle.

v The low priority value must be less than or equal to 254.

v If the high priority value is less than (more favored than) the priority of the high

performance switch fault-service daemon, and if the low priority portion of the

adjustment cycle is less than two seconds, then switch fault recovery will be

unsuccessful, and the node will be disconnected from the switch.

v The coscheduling facility allows programs using the User Space library to

maximize their effectiveness in interchanging data. The process may also be

used for programs using IP, either over the switch or over another supported

device. However, if the high priority phase of the user’s program is more favored

than the network processes (typically priorities 36-39), the required IP message

passing traffic may be blocked and cause the program to hang.

v Consult the include file /usr/include/sys/pri.h for definitions of the priorities used

for normal AIX functions.

v Each node may have a different /etc/poe.priority file that defines the scheduling

parameters for tasks running on that node.

v The primary performance enhancement is achieved when the user’s application

can run with minimal interference from the standard AIX daemons running on

each node. This is achieved when the user’s application is scheduled with a fixed

priority that is more favored than the daemon’s, which typically run with a priority

setting of 60.

Chapter 3. Managing POE jobs 81

v More favored priority values are numerically smaller than less favored priority

values

The coscheduler is designed to work with a globally synchronized external clock,

such as the switch clock registers on the pSeries High Performance Switch. When

the coscheduler is started on a node, it looks for the existence of the switch clock. If

one is found, the coscheduler turns off the Network Time Protocol (NTP) daemon, if

it is running, and synchronizes the AIX clock seconds with the switch clock

seconds. The intent is to globally synchronize the AIX time slices applied to the

parallel job. When the job terminates, the NTP daemon is restarted, if it had been

turned off. The use of the NTP daemon may be controlled with the

MP_PRIORITY_NTP environment variable and -priority_ntp command line flag.

Status and error messages generated during the priority adjustment process are

written to the file /tmp/pmadjpri.log (this may also be controlled by the POE

MP_PRIORITY_LOG environment variable and -priority_log command line flag).

Note that ownership of the log file is transferred from root to the user that is

executing the parallel application.

Also note that any error or diagnostic information from POE’s invocation of the

priority adjustment function will be recorded in the partition manager log (controlled

by the POE MP_PMDLOG environment variable and -pmdlog command line flag.)

AIX Dispatcher tuning

The coscheduler can be used in conjunction with the AIX Dispatcher functions to

optimize the process dispatch and interrupt management in the kernel, to allow

fine-grained parallel applications to achieve better performance. The AIX schedo

command offers the following options that may be of interest:

v big_tick_size, to unstagger (real-time kernel only) and reduce the number of

physical timer interrupts per second. Increasing the big_tick_size increases the

interval between activations of the dispatcher, and can reduce the amount of

overhead for dispatching.

v force_grq, to assign all processes that are not part of the PE/MPI job to the

global run queue. This allows all non-MPI activity to compete equally for available

CPU resources. Without setting this option, non-MPI processes may queue up for

resources on a busy processor, when another processor is idle.

The use of such tunables are only fully effective if the AIX kernel is running with the

Real Time option, requiring a system reboot. This is required to produce the

interrupts necessary for the coscheduler to modify the priorities, and no longer

stagger the interrupts.

Once the big_tick_size option is changed, interrupts can no longer be staggered

until the system is rebooted, even if big_tick_size is reset. In addition, if the

real-time kernel is enabled without any change to big_tick_size, the interrupts will

remain staggered.

Also, using the force_grq option could degrade system performance when a

system is not dedicated to running a parallel job.

The system administrator must enable or disabled these options as well as perform

the necessary system reboot.

82 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

For additional details on enabling the coscheduler and AIX dispatcher, see IBM

Parallel Environment: Installation.

Chapter 3. Managing POE jobs 83

84 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Appendix A. Parallel Environment commands

PE includes manual pages for all of its user commands. Each manual page is

organized into the sections listed below. The sections always appear in the same

order, but some appear in all manual pages while others are optional.

NAME

Provides the name of the command described in the manual page, and a

brief description of its purpose.

SYNOPSIS

Includes a diagram that summarizes the command syntax, and provides a

brief synopsis of its use and function. If you are unfamiliar with the

typographic conventions used in the syntax diagrams, see “Conventions

and terminology used in this book” on page viii.

FLAGS

Lists and describes any required and optional flags for the command.

DESCRIPTION

Describes the command more fully than the NAME and SYNOPSIS

sections.

ENVIRONMENT VARIABLES

Lists and describes any applicable environment variables.

EXAMPLES

Provides examples of ways in which the command is typically used.

FILES

Lists and describes any files related to the command.

RELATED INFORMATION

Lists commands, functions, file formats, and special files that are employed

by the command, that have a purpose related to the command, or that are

otherwise of interest within the context of the command.

© Copyright IBM Corp. 1993, 2006 85

|

mcp

NAME

mcp – Allows you to propagate a copy of a file to multiple nodes.

SYNOPSIS

mcp infile [outfile] [POE options]

In the previous command synopsis, the infile is the name of the file to be copied.

You can copy to a new name by specifying an outfile. If you do not provide the

outfile name, the file will be placed in its current directory on each node. The outfile

can be either an explicit output file name or a directory name. When a directory is

specified, the file is copied with the same name to that directory.

DESCRIPTION

The mcp command allows you to propagate a copy of a file to multiple nodes. The

file must initially reside (or be NFS-mounted) on at least one node.

mcp is a POE program and, therefore, all POE options are available. You can set

POE options with either command line flags or environment variables. The number

of nodes to copy the file to (-procs), and the message passing protocol used to

copy the file (-euilib) are the POE options of most interest. The input file must be

readable from the node assigned to task 0.

Note: A POE job loads faster if a copy of the job resides on each node. For this

reason, it is suggested that you use mcp to copy your executable to a file

system such as /tmp, which resides on each node.

Return codes are:

129

incorrect usage

130

error opening input file

131

error opening to file on originating node

132

error writing data to to file on originating node

133

no room on remote node’s file system

134

error opening file on remote node

135

error writing data on remote node

136

error renaming temp file to file name

137

input file is empty

mcp

86 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

138

invalid block size

139

error allocating storage

ENVIRONMENT VARIABLES

MP_BLKSIZE

Sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. To copy a file from your current directory to the current directory for 16 tasks,

using the User Space protocol, enter:

mcp filename -procs 16 -euilib us

2. To copy a filename from your current directory to the /tmp directory for 16

tasks, using IP, enter:

mcp filename /tmp -procs 16 -euilib ip

3. To copy a file from your current directory to a different filename for 16 tasks,

enter:

mcp filename /tmp/newfilename -procs 16

RELATED INFORMATION

Commands: rcp(1)

mcp

Appendix A. Parallel Environment commands 87

mcpgath

NAME

mcpgath – Takes files from each task of tasks 0 to n-1 and copies them back in

sequence to task 0.

SYNOPSIS

mcpgath [-ai] source ... destination [POE options]

Source is one of the following:

v one or more existing file names - files will be copied with the same names to the

destination directory on task 0. Each file name specified must exist on all tasks

involved in the copy.

v a directory name - all files in that directory on each task are copied with the

same names to the destination directory on task 0.

v an expansion of file names, using wildcards - files are copied with the same

names to the destination directory. All wildcarded input strings must be enclosed

in double quotes.

Destination is an existing destination directory name to where the data will be

copied. The destination directory must be the last item specified before any POE

flags.

FLAGS

-a An optional flag that appends the task number to the end of the file name when

it is copied to task 0. This is for task identification purposes, to know where the

data came from. The -a and -i flags can be combined to check for existing files

appended with the task number.

-i An optional flag that checks for duplicate or existing files of the same name,

and does not replace any existing file found. Instead, issues an error message

and continues with the remaining files to be copied. The -a and -i flags can be

combined to check for existing files appended with the task number.

See Chapter 2, “Executing parallel programs” for information on POE options.

DESCRIPTION

The mcpgath function determines the list of files to be gathered on each task. This

function also resolves the source file, destination directory, and path names with

any meta characters, wildcard expansions, and so on, to come up with valid file

names. Enclose wildcards in double quotes, otherwise they will be expanded locally

on the task from where the command is issued, which may not produce the

intended file name resolution.

mcpgath is a POE program and, therefore, all POE options are available. You can

set POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest.

Return codes are:

mcpgath

88 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

129

invalid number of arguments specified

130

invalid option flag specified

131

unable to resolve input file name(s)

132

could not open input file for read

133

no room on destination node’s file system

134

error opening file output file

135

error creating output file

136

error writing to output file

137

MPI_Send of data failed

138

final MPI_Send failed

139

MPI_Recv failed

140

invalid block size

141

error allocating storage

142

total number of tasks must be greater than one

ENVIRONMENT VARIABLES

MP_BLKSIZE

Sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. You can copy a single file from all tasks into the destination directory. For

example, enter:

mcpgath -a hello_world /tmp -procs 4

This will copy the file hello_world (assuming it is a file and not a directory) from

tasks 0 through 3 as to task 0:

From task 0: /tmp/hello_world.0

From task 1: /tmp/hello_world.1

mcpgath

Appendix A. Parallel Environment commands 89

From task 2: /tmp/hello_world.2

From task 3: /tmp/hello_world.3

2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:

mcpgath -a file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory on each task and copy

them back to task 0. All files specified must exist on all tasks involved. The file

distribution will be as follows:

From Task 0: /tmp/file1.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 3: /tmp/file1.a.3

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file2.a.1

From Task 2: /tmp/file2.a.2

From Task 3: /tmp/file2.a.3

From Task 0: /tmp/file3.a.0

From Task 1: /tmp/file3.a.1

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file3.a.3

From Task 0: /tmp/file4.a.0

From Task 1: /tmp/file4.a.1

From Task 2: /tmp/file4.a.2

From Task 3: /tmp/file4.a.3

From Task 0: /tmp/file5.a.0

From Task 1: /tmp/file5.a.1

From Task 2: /tmp/file5.a.2

From Task 3: /tmp/file5.a.3

3. You can specify wildcard values to expand into a list of files to be gathered. For

this example, assume the following distribution of files before calling mcpgath:

Task 0 contains file1.a and file2.a

Task 1 contains file1.a only

Task 2 contains file1.a, file2.a, and file3.a

Task 3 contains file4.a, file5.a, and file6.a

Enter:

mcpgath

90 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

mcpgath -a "file*.a" /tmp -procs 4

This will pass the wildcard expansion to each task, which will resolve into the

list of locally existing files to be copied. This results in the following distribution

of files on task 0:

From Task 0: /tmp/file1.a.0

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file2.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

From Task 3: /tmp/file6.a.3

4. You can specify a directory name as the source, from which the files to be

gathered are found. For this example, assume the following distribution of files

before calling mcpgath:

Task 0 /test contains file1.a and file2.a

Task 1 /test contains file1.a only

Task 2 /test contains file1.a and file3.a

Task 3 /test contains file2.a, file4.a, and file5.a

Enter:

mcpgath -a /test /tmp -procs 4

This results in the following file distribution:

From Task 0: /tmp/file1.a.0

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file2.a.3

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

mcpgath

Appendix A. Parallel Environment commands 91

mcpscat

NAME

mcpscat – Takes a number of files from task 0 and scatters them in sequence to

all tasks, in a round robin order.

SYNOPSIS

mcpscat [-f] [-i] source ...

destination

[POE options]

Source can be one of the following:

v a single file name - file is copied to all tasks

v a single file name that contains a list of file names (-f option)

v two or more file names - files will be distributed in a round robin order to the

tasks

v an expansion of file names, using wildcards - files will be distributed in a round

robin order to the tasks

v a directory name - all files in that directory are copied in a round robin order to

the tasks.

Destination is an existing destination directory name to where the data will be

copied.

FLAGS

-f Is an optional flag that indicates that the first file contains the names of the

source files that are to be scattered. Each file name, in the file, must be

specified on a separate line. No wildcards are supported when this option is

used. Directory names are not supported in the file either. When this option is

used, the mcpscat parameters should consist of a single source file name (for

the list of files) and a destination directory. The files will then be scattered just

as if they had all been specified on the command line in the same order as they

are listed in the file.

-i Checks for duplicate or existing files of the same name, and does not replace

any existing file found. Instead, issues an error message and continues with the

remaining files to be copied. Without this flag, the default action is to replace

any existing files with the source file.

See Chapter 2, “Executing parallel programs” for information on POE options.

DESCRIPTION

The mcpscat function determines the order in which to distribute the files, using a

round robin method, according to the list of nodes and number of tasks. Files are

sent in a one-to-one correspondence to the nodes in the list of tasks. If the number

of files specified is greater than the number of nodes, the remaining files are sent in

another round through the list of nodes. Enclose wildcards in double quotes,

otherwise they will be expanded locally on the task from where the command is

issued, which may not produce the intended file name resolution.

mcpscat

92 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

mcpscat is a POE program and, therefore, all POE options are available. You can

set POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest.

Return codes are:

129

invalid number of arguments specified

130

invalid option flag specified

131

unable to resolve input file name(s)

132

could not open input file for read

133

no room on destination node’s file system

134

error opening file output file

135

error creating output file

136

MPI_Send of data failed

137

final MPI_Send failed

138

MPI_Recv failed

139

failed opening temporary file

140

failed writing temporary file

141

error renaming temp file to filename

142

input file is empty (zero byte file size)

143

invalid block size

144

error allocating storage

145

number of tasks and files do not match

146

not enough memory for list of file names

mcpscat

Appendix A. Parallel Environment commands 93

ENVIRONMENT VARIABLES

MP_BLKSIZE

Sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. You can copy a single file to all tasks into the destination directory. For

example, enter:

mcpscat filename /tmp -procs 4

This will take the file and distribute it to tasks 0 through 3 as /tmp/filename.

2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:

mcpscat file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory and copy them in a round

robin order to tasks 0 through 3 into /tmp. The file distribution will be as follows:

Task 0: /tmp/file1.a

Task 1: /tmp/file2.a

Task 2: /tmp/file3.a

Task 3: /tmp/file4.a

Task 0: /tmp/file5.a

3. You can specify the source files to copy in a file. For example:

mcpscat -f file.list /tmp -procs 4

will produce the same results as the previous example if as file.list contains five

lines with the file names file1.a through file5.a in it.

4. You can specify wildcard values to expand into a list of files to be scattered.

Enter:

mcpscat "file*.a" /tmp -procs 4

Assuming Task 0 contains file1.a, file2.a, file3.a, file4.a, and file5.a in its home

directory, this will result in a similar distribution as in the previous example.

5. You can specify a directory name as the source, from which the files to be

scattered are found. Assuming /test contains myfile.a, myfile.b, myfile.c, myfile.d,

myfile.f, and myfile.g on Task 0, enter:

mcpscat /test /tmp -procs 4

This results in the following file distribution:

Task 0: /tmp/myfile.a

Task 1: /tmp/myfile.b

Task 2: /tmp/myfile.c

Task 3: /tmp/myfile.d

mcpscat

94 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Task 0: /tmp/myfile.f

Task 1: /tmp/myfile.g

mcpscat

Appendix A. Parallel Environment commands 95

mpamddir

NAME

mpamddir – echoes an amd-mountable directory name.

SYNOPSIS

mpamddir

or, if you’re using the Parallel Environment:

export MP_REMOTEDIR=mpamddir

This script determines whether or not the current directory is a mounted file system.

If it is, it looks to see if it appears in the amd maps, and constructs a name for the

directory that is known to amd. You can modify this script, or create additional ones

that apply to your installation.

By default, POE uses the Korn shell pwd command to obtain the name of the

current directory to pass to the remote nodes for execution. This works for C shell

users if the current directory is:

v The home directory

v Not mounted by amd, the AutoMount Daemon.

If this is not the case, (for example, if the user’s current directory is a subdirectory

of the home directory), then you can supply your own script for providing the name

of the current directory on the remote nodes.

To use mpamddir as the script for providing the name, export the environment

variable MP_REMOTEDIR, and set it to mpamddir.

RELATED INFORMATION

Commands: ksh(1), poe(1), csh(1)

mpamddir

96 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

mpcc_r

NAME

mpcc_r – Invokes a shell script to compile C programs which use MPI.

SYNOPSIS

mpcc_r [cc_flags]... program.c

The mpcc_r shell script compiles C programs while linking in the Partition Manager,

the Message Passing Interface (MPI), and (optionally) Low-level Applications

Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlc_r or cc_r command can

also be used on mpcc_r. For a complete listing of these flag options, refer to the

manual page for the compiler cc_r command. Typical options to mpcc_r include:

-v causes a “verbose” output listing of the shell script.

-g

produces an object file with symbol table references. This object file is needed

for debugging with the pdbx debugger.

-o

names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on profiling programs in IBM Parallel Environment: Operation and

Use, Volume 2

-pg

enables profiling with the xprofiler and gprof commands. For more information,

see the xprofiler information in AIX 5L Performance Tools Guide and Reference

or AIX 5L Performance Tools Guide and Reference and the appendix on

profiling programs in IBM Parallel Environment: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpcc_r

Appendix A. Parallel Environment commands 97

DESCRIPTION

The mpcc_r shell script invokes the xlc_r command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpcc_r to the xlc_r command, so any of the xlc_r options

can be used on the mpcc_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the poe

command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

ENVIRONMENT VARIABLES

MP_BYTECOUNT

For users who are collecting byte count data (the number of bytes sent and

received) using the Performance Collection Tool, this variable specifies

which PE Benchmarker profiling library should be linked to the application.

 Note that the Performance Collection Tool (the ppe.perf file set) must first

be installed before you can compile a program with MP_BYTECOUNT.

Also, you must set MP_BYTECOUNT before invoking this compiler script.

 The valid values are mpi to profile MPI communications, lapi to profile LAPI

communications, or both to profile both MPI and LAPI communications.

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the standard

path /usr/lpp/ppe.poe is used. If this environment variable is set, then all

libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. Note that the Performance Collection Tool (the ppe.perf file

set) must first be installed before compiling a program with MP_UTE.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a C program, enter:

mpcc_r program.c -o program

FILES

When you compile a program using mpcc_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message Passing Interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

mpcc_r

98 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

/usr/lib/liblapi_r.a

When you specify a value with the MP_BYTECOUNT environment variable, the

corresponding library is included, as follows:

v If you specify MP_BYTECOUNT = mpi, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

library is included.

v If you specify MP_BYTECOUNT = lapi, the /usr/lpp/ppe.perf/lib/liblapicount_r.a

library is included.

v If you specify MP_BYTECOUNT = both, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

and /usr/lpp/ppe.perf/lib/liblapicount_r.a libraries are both included.

When you specify MP_UTE = yes, the /usr/lpp/ppe.perf/lib/libute_r.a library is

included.

RELATED INFORMATION

Commands: mpCC_r(1), cc(1), pdbx(1)

mpcc_r

Appendix A. Parallel Environment commands 99

mpCC_r

NAME

mpCC_r – Invokes a shell script to compile C++ programs which use MPI.

SYNOPSIS

mpCC_r [xlC_flags]... program.C

The mpCC_r shell script compiles C++ programs while linking in the Partition

Manager, Message Passing Interface (MPI), and (optionally) Low-level Applications

Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlC_r command can also be

used on mpCC_r. For a complete listing of these flag options, refer to the manual

page for the xlC_r command. Typical options to mpCC_r include:

-v causes a “verbose” output listing of the shell script.

-g

produces an object file with symbol table references.

-o

names the executable.

-cpp

enables the use of full C++ bindings in MPI.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on profiling programs in IBM Parallel Environment: Operation and

Use, Volume 2

-pg

enables profiling with the xprofiler and gprof commands. For more information,

see the xprofiler information in AIX 5L Performance Tools Guide and Reference

or AIX 5L Performance Tools Guide and Reference and the appendix on

profiling programs in IBM Parallel Environment: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpCC_r

100 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

DESCRIPTION

The mpCC_r shell script invokes the xlC_r command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpCC_r to the xlC_r command, so any of the xlC_r options

can be used on the mpCC_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the poe

command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

ENVIRONMENT VARIABLES

MP_BYTECOUNT

For users who are collecting byte count data (the number of bytes sent and

received) using the Performance Collection Tool, this variable specifies

which PE Benchmarker profiling library should be linked to the application.

 Note that the Performance Collection Tool (the ppe.perf file set) must first

be installed before you can compile a program with MP_BYTECOUNT.

Also, you must set MP_BYTECOUNT before invoking this compiler script.

 The valid values are mpi to profile MPI communications, lapi to profile LAPI

communications, or both to profile both MPI and LAPI communications.

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the standard

path /usr/lpp/ppe.poe is used. If this environment variable is set, then all

libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. Note that the Performance Collection Tool (the ppe.perf file

set) must first be installed before compiling a program with MP_UTE.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a C++ program, enter:

mpCC_r program.C -o program

FILES

When you compile a program using mpCC_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

mpCC_r

Appendix A. Parallel Environment commands 101

/usr/lib/liblapi_r.a

When you specify a value with the MP_BYTECOUNT environment variable, the

corresponding library is included, as follows:

v If you specify MP_BYTECOUNT = mpi, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

library is included.

v If you specify MP_BYTECOUNT = lapi, the /usr/lpp/ppe.perf/lib/liblapicount_r.a

library is included.

v If you specify MP_BYTECOUNT = both, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

and /usr/lpp/ppe.perf/lib/liblapicount_r.a libraries are both included.

When you specify MP_UTE = yes, the /usr/lpp/ppe.perf/lib/libute_r.a library is

included.

RELATED INFORMATION

Commands: mpcc_r(1), xlC(1), pdbx(1)

mpCC_r

102 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

mpiexec

NAME

mpiexec – Invokes the Parallel Operating Environment (POE) for loading and

executing programs on remote processor nodes. This command invokes the poe

command.

SYNOPSIS

mpiexec -n partition_size program

The mpiexec command is described in the MPI-2 standard as a portable way of

starting MPI jobs; it is provided here to conform with that standard. The mpiexec

command invokes poe to run the specified program. The mpiexec command

translates the -n flag to the -procs flag for the poe command. The mpiexec

command passes all other arguments unchanged to the poe command. Refer to

the poe command man page for additional details on its flags.

FLAGS

In addition to the -n flag described below, all poe command flags are accepted, and

passed unchanged to the poe command.

If you are familiar with the description of the mpiexec command in the MPI-2

standard, please note that we have chosen to implement only the command syntax

required for compliance with that standard. The optional flags have not been

implemented, as our poe command, which is invoked by the mpiexec command,

offers sufficient functionality.

-n

Translated to the -procs flag and passed to the poe command. This determines

the number of program tasks. If not set, the default is 1.

EXAMPLES

To invoke an MPI program sample to run as five tasks:

 mpiexec -n 5 sample

RELATED INFORMATION

Commands: poe(1)

mpiexec

Appendix A. Parallel Environment commands 103

mpxlf_r

NAME

mpxlf_r – Invokes a shell script to compile Fortran programs which use MPI.

SYNOPSIS

mpxlf_r [xlf_flags]... program.f

The mpxlf_r shell script compiles Fortran programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf command can also be used

on mpxlf_r. For a complete listing of these flag options, refer to the manual page

for the xlf command. Typical options to mpxlf_r include:

-v causes a “verbose” output listing of the shell script.

-g

produces an object file with symbol table references. This object file is needed

for debugging with the pdbx debugger.

-o

names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on profiling programs in IBM Parallel Environment: Operation and

Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more information,

see the xprofiler information in AIX 5L Performance Tools Guide and Reference

or AIX 5L Performance Tools Guide and Reference and the appendix on

profiling programs in IBM Parallel Environment: Operation and Use, Volume 2.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

mpxlf_r

104 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

DESCRIPTION

The mpxlf_r shell script invokes the xlf command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf_r to the xlf command, so any of the xlf options can be

used on the mpxlf_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the poe

command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user-specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_BYTECOUNT

For users who are collecting byte count data (the number of bytes sent and

received) using the Performance Collection Tool, this variable specifies

which PE Benchmarker profiling library should be linked to the application.

 Note that the Performance Collection Tool (the ppe.perf file set) must first

be installed before you can compile a program with MP_BYTECOUNT.

Also, you must set MP_BYTECOUNT before invoking this compiler script.

 The valid values are mpi to profile MPI communications, lapi to profile LAPI

communications, or both to profile both MPI and LAPI communications.

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the standard

path /usr/lpp/ppe.poe is used. If this environment variable is set, then all

libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. Note that the Performance Collection Tool (the ppe.perf file

set) must first be installed before compiling a program with MP_UTE.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

mpxlf_r

Appendix A. Parallel Environment commands 105

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran program, enter:

mpxlf_r program.f -o program

FILES

When you compile a program using mpxlf_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

When you specify a value with the MP_BYTECOUNT environment variable, the

corresponding library is included, as follows:

v If you specify MP_BYTECOUNT = mpi, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

library is included.

v If you specify MP_BYTECOUNT = lapi, the /usr/lpp/ppe.perf/lib/liblapicount_r.a

library is included.

v If you specify MP_BYTECOUNT = both, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

and /usr/lpp/ppe.perf/lib/liblapicount_r.a libraries are both included.

When you specify MP_UTE = yes, the /usr/lpp/ppe.perf/lib/libute_r.a library is

included.

RELATED INFORMATION

Commands: mpcc_r(1), xlf_r(1), pdbx(1)

mpxlf_r

106 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

mpxlf90_r

NAME

mpxlf90_r – Invokes a shell script to compile Fortran 90 programs which use MPI.

SYNOPSIS

mpxlf90_r [xlf_flags]... program.f

The mpxlf90_r shell script compiles Fortran 90 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf command can also be used

on mpxlf90_r. For a complete listing of these flag options, refer to the manual page

for the xlf command. Typical options to mpxlf90_r include:

-v causes a “verbose” output listing of the shell script.

-g

produces an object file with symbol table references.

-o

names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on profiling programs in IBM Parallel Environment: Operation and

Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more information,

see the xprofiler information in AIX 5L Performance Tools Guide and Reference

or AIX 5L Performance Tools Guide and Reference and the appendix on

profiling programs in IBM Parallel Environment: Operation and Use, Volume 2.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

mpxlf90_r

Appendix A. Parallel Environment commands 107

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

DESCRIPTION

The mpxlf90_r shell script invokes the xlf command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf90_r to the xlf command, so any of the xlf options can

be used on the mpxlf90_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the poe

command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_BYTECOUNT

For users who are collecting byte count data (the number of bytes sent and

received) using the Performance Collection Tool, this variable specifies

which PE Benchmarker profiling library should be linked to the application.

 Note that the Performance Collection Tool (the ppe.perf file set) must first

be installed before you can compile a program with MP_BYTECOUNT.

Also, you must set MP_BYTECOUNT before invoking this compiler script.

 The valid values are mpi to profile MPI communications, lapi to profile LAPI

communications, or both to profile both MPI and LAPI communications.

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the standard

path /usr/lpp/ppe.poe is used. If this environment variable is set, then all

libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. Note that the Performance Collection Tool (the ppe.perf file

set) must first be installed before compiling a program with MP_UTE.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

mpxlf90_r

108 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran 90 program, enter:

mpxlf90_r program.f -o program

FILES

When you compile a program using mpxlf90_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

When you specify a value with the MP_BYTECOUNT environment variable, the

corresponding library is included, as follows:

v If you specify MP_BYTECOUNT = mpi, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

library is included.

v If you specify MP_BYTECOUNT = lapi, the /usr/lpp/ppe.perf/lib/liblapicount_r.a

library is included.

v If you specify MP_BYTECOUNT = both, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

and /usr/lpp/ppe.perf/lib/liblapicount_r.a libraries are both included.

When you specify MP_UTE = yes, the /usr/lpp/ppe.perf/lib/libute_r.a library is

included.

RELATED INFORMATION

Commands: mpcc_r(1), xlf_r(1), mpxlf_r(1), pdbx(1)

mpxlf90_r

Appendix A. Parallel Environment commands 109

mpxlf95_r

NAME

mpxlf95_r – Invokes a shell script to compile Fortran 95 programs which use MPI.

SYNOPSIS

mpxlf95_r [xlf_flags]... program.f

The mpxlf95_r shell script compiles Fortran 95 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf95 command can also be

used on mpxlf95_r. For a complete listing of these flag options, refer to the manual

page for the xlf95 command. Typical options to mpxlf95_r include:

-v causes a “verbose” output listing of the shell script.

-g

produces an object file with symbol table references.

-o

names the executable.

-l (lowercase L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (uppercase i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on profiling programs in IBM Parallel Environment: Operation and

Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more information,

see the xprofiler information in AIX 5L Performance Tools Guide and Reference

or AIX 5L Performance Tools Guide and Reference and the appendix on

profiling programs in IBM Parallel Environment: Operation and Use, Volume 2.

-q64

Causes code to compile to 64-bit objects. On AIX, the default is to compile to

32-bit objects. The OBJECT_MODE environment variable can be used to select

either a 32-bit or 64-bit default. –q64 supersedes any OBJECT_MODE setting.

mpxlf95_r

110 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

-q32

Causes code to compile to 32-bit objects. On AIX, the default is to compile to

32-bit objects. –q32 is required only if the OBJECT_MODE environment

variable has been used to change the default. –q32 supersedes any

OBJECT_MODE setting.

DESCRIPTION

The mpxlf95_r shell script invokes the xlf95 command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf95_r to the xlf95 command, so any of the xlf95 options

can be used on the mpxlf95_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the poe

command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are distinct 32-bit and 64-bit versions of mpif.h and mpi.mod, and the

Fortran compilation scripts provide the include path to select the correct version.

The script’s decision is based on the OBJECT_MODE environment variable setting

and the use of the –q32 or -q64 flags when the script was invoked. Alternate ways

of forcing 32-bit or 64-bit compilation may result in selecting the wrong include. A

user-specified include path provided through a makefile or compilation command

line flag will be searched before the script’s path. If any user-specified include path

provides an inappropriate copy of mpif.h, the script will not be able to override and

select the appropriate copy. Alterations made to xlf.cfg, in an effort to force 64-bit

compilation, are not recognized by the script.

ENVIRONMENT VARIABLES

MP_BYTECOUNT

For users who are collecting byte count data (the number of bytes sent and

received) using the Performance Collection Tool, this variable specifies

which PE Benchmarker profiling library should be linked to the application.

 Note that the Performance Collection Tool (the ppe.perf file set) must first

be installed before you can compile a program with MP_BYTECOUNT.

Also, you must set MP_BYTECOUNT before invoking this compiler script.

 The valid values are mpi to profile MPI communications, lapi to profile LAPI

communications, or both to profile both MPI and LAPI communications.

MP_PREFIX

Sets an alternate path to the scripts library. If not set or NULL, the standard

path /usr/lpp/ppe.poe is used. If this environment variable is set, then all

libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. Note that the Performance Collection Tool (the ppe.perf file

set) must first be installed before compiling a program with MP_UTE.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

mpxlf95_r

Appendix A. Parallel Environment commands 111

executable, as if the -q64 option had been set. Setting this variable to

anything other than 64, or not setting it has no effect on how the

executables are built.

EXAMPLES

To compile a Fortran 95 program, enter:

mpxlf95_r program.f -o program

FILES

When you compile a program using mpxlf95_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

When you specify a value with the MP_BYTECOUNT environment variable, the

corresponding library is included, as follows:

v If you specify MP_BYTECOUNT = mpi, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

library is included.

v If you specify MP_BYTECOUNT = lapi, the /usr/lpp/ppe.perf/lib/liblapicount_r.a

library is included.

v If you specify MP_BYTECOUNT = both, the /usr/lpp/ppe.perf/lib/libmpicount_r.a

and /usr/lpp/ppe.perf/lib/liblapicount_r.a libraries are both included.

When you specify MP_UTE = yes, the /usr/lpp/ppe.perf/lib/libute_r.a library is

included.

RELATED INFORMATION

Commands: mpcc_r(1), xlf95_r(1), mpxlf_r(1), mpxlf95(1), pdbx(1)

mpxlf95_r

112 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

poe

NAME

poe – Invokes the Parallel Operating Environment (POE) for loading and executing

programs on remote processor nodes.

SYNOPSIS

poe [-h] [-v] [program] [program_options]...

[-adapter_use adapter_specifier]

[-buffer_mem {buffer_size | preallocated_buffer_size,maximum_buffer_size}]

[-bulk_min_msg_size message_size]

[-cc_scratch_buf {yes | no}]

[-clock_source {aix | switch}]

[-cmdfile commands_file]

[-coredir directory_prefix_string | none]

[-corefile_format { lightweight_corefile_name | STDERR }]

[-corefile_sigterm {yes | no}]

[-cpu_use cpu_specifier]

[-css_interrupt {yes | no}]

[-debug_notimeout non-null string of characters]

[-eager_limit size_limit]

[-euidevelop {yes | no | deb | min | nor}]

[-euidevice device_specifier]

[-euilib {ip | us}]

[-euilibpath path_specifier]

[-hints_filtered {yes | no}]

[{-hostfile | -hfile} host_file_name]

[{-infolevel | -ilevel} message_level]

[-io_buffer_size buffer_size]

[-io_errlog {yes | no}]

[-ionodefile io_node_file_name]

[-instances number_of_instances]

[-labelio {yes | no}]

[-llfile loadleveler_job_command_file_name]

[-msg_api {MPI | LAPI | MPI_LAPI |MPI, LAPI | LAPI, MPI }]

[-msg_envelope_buf envelope_buffer_size][-newjob {yes | no}]

[-nodes number_of_nodes]

[-pgmmodel {spmd | mpmd}]

[-pmdlog {yes | no}]

[-polling_interval interval]

[-printenv {yes | no | script_name }]

[-procs partition_size]

[-priority_log {yes | no}]

[-priority_ntp {yes | no}][-pulse interval]

[-rdma_count {rCxt block value| MPI rCxt block value, LAPI rCxt block value}]

[-resd {yes | no}]

[-retransmit_interval interval]

[-retry retry_interval|wait]

[-retrycount retry_count]

[-rexmit_buf_cnt number of buffers]

poe

Appendix A. Parallel Environment commands 113

[-rexmit_buf_size buffer_size]

[-rmpool pool_ID]

[-savehostfile output_file_name]

[-save_llfile output_file_name]

[-shared_memory {yes | no}]

[-single_thread {no | yes}]

[-statistics {yes | no| print}]

[-stdinmode {all | none | task_ID}]

[-stdoutmode {unordered | ordered | task_ID}]

[-task_affinity {SNI | MCM | mcm_list}]

[-tasks_per_node number_of_tasks per node]

[-thread_stacksize stacksize]

[-tlp_required {none |warn | kill}]

[-udp_packet_size {packet_size}]

[-use_bulk_xfer {yes | no}]

[-wait_mode {nopoll |poll | sleep | yield}]

The poe command invokes the Parallel Operating Environment for loading and

executing programs on remote processor nodes. The operation of POE is

influenced by a number of POE environment variables. The flag options on this

command are each used to temporarily override one of these environment

variables. User program_options can be freely interspersed with the flag options. If

no program is specified, POE will either prompt you for programs to load, or, if the

MP_CMDFILE environment variable is set, will load the partition using the specified

commands file.

FLAGS

The -h flag, when used, must appear immediately after poe, and causes the poe

man page, if it exists, to be printed to stdout.

The remaining flags that you can specify on this command are used to temporarily

override POE environment variables. For more information on valid values, and on

what a particular flag sets, refer to the description of its associated environment

variable in the ENVIRONMENT VARIABLES section. The following flags are

grouped by function.

The following Partition Manager control flags override the associated environment

variables.

-adapter_use

MP_ADAPTER_USE

-cpu_use

MP_CPU_USE

-euidevice

MP_EUIDEVICE

-euilib

MP_EUILIB

-euilibpath

MP_EUILIBPATH

-hostfile or -hfile

MP_HOSTFILE

-procs

MP_PROCS

-pulse

MP_PULSE

poe

114 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

-rdma_count

MP_RDMA_COUNT

-resd

MP_RESD

-retry

MP_RETRY

-retrycount

MP_RETRYCOUNT

-msg_api

MP_MSG_API

-rmpool

MP_RMPOOL

-nodes

MP_NODES

-tasks_per_node

MP_TASKS_PER_NODE

-savehostfile

MP_SAVEHOSTFILE

The following Job Specification flags override the associated environment variables.

-cmdfile

MP_CMDFILE

-instances

MP_INSTANCES

-llfile

MP_LLFILE

-newjob

MP_NEWJOB

-pgmmodel

MP_PGMMODEL

-save_llfile

MP_SAVE_LLFILE

-task_affinity

MP_TASK_AFFINITY

The following I/O Control flags override the associated environment variables.

-labelio

MP_LABELIO

-stdinmode

MP_STDINMODE

-stdoutmode

MP_STDOUTMODE

The following generation of diagnostic information flags override the associated

environment variables.

-infolevel or -ilevel

MP_INFOLEVEL

-pmdlog

MP_PMDLOG

-debug_notimeout

MP_DEBUG_NOTIMEOUT

The following Message Passing flags override the associated environment

variables.

-buffer_mem

MP_BUFFER_MEM

poe

Appendix A. Parallel Environment commands 115

-cc_scratch_buf

MP_CC_SCRATCH_BUF

-clock_source

MP_CLOCK_SOURCE

-css_interrupt

MP_CSS_INTERRUPT

-eager_limit

MP_EAGER_LIMIT

-hints_filtered

MP_HINTS_FILTERED

-ionodefile

MP_IONODEFILE

-msg_envelope_buf

MP_MSG_ENVELOPE_BUF

-shared_memory

MP_SHARED_MEMORY

-udp_packet_size

MP_UDP_PACKET_SIZE

-thread_stacksize

MP_THREAD_STACKSIZE

-single_thread

MP_SINGLE_THREAD

-wait_mode

MP_WAIT_MODE

-polling_interval

MP_POLLING_INTERVAL

-retransmit_interval

MP_RETRANSMIT_INTERVAL

-statistics

MP_STATISTICS

-io_buffer_size

MP_IO_BUFFER_SIZE

-io_errlog

MP_IO_ERRLOG

-use_bulk_xfer

MP_USE_BULK_XFER

-bulk_min_msg_size

MP_BULK_MIN_MSG_SIZE

-rexmit_buf_size

MP_REXMIT_BUF_SIZE

-rexmit_buf_cnt

MP_REXMIT_BUF_CNT

The following corefile generation flags override the associated environment

variables.

-coredir

MP_COREDIR

-corefile_format

MP_COREFILE_FORMAT

-corefile_sigterm

MP_COREFILE_SIGTERM

The following are miscellaneous flags:

-euidevelop

MP_EUIDEVELOP

poe

116 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

-printenv

MP_PRINTENV

-statistics

MP_STATISTICS

-priority_log

MP_PRIORITY_LOG

-priority_ntp

MP_PRIORITY_NTP

-tlp_required

MP_TLP_REQUIRED

DESCRIPTION

The poe command invokes the Parallel Operating Environment for loading and

executing programs on remote nodes. You can enter it at your home node to:

v load and execute an SPMD program on all nodes of your partition.

v individually load the nodes of your partition with an MPMD job.

v load and execute a series of SPMD and MPMD programs, in individual job steps,

on the same partition.

v run nonparallel programs on remote nodes.

The operation of POE is influenced by a number of POE environment variables.

The flag options on this command are each used to temporarily override one of

these environment variables. User program_options can be freely interspersed with

the flag options, and additional_options not to be parsed by POE can be placed

after a fence_string defined by the MP_FENCE environment variable. If no program

is specified, POE will either prompt you for programs to load, or, if the

MP_CMDFILE environment variable is set, will load the partition using the specified

commands file.

The environment variables and flags that influence the operation of this command

fall into distinct categories of function. They are:

v Partition Manager control. The environment variables and flags in this category

determine the method of node allocation, message passing mechanism, and the

PULSE monitor function.

v Job specification. The environment variables and flags in this category

determine whether or not the Partition Manager should maintain the partition for

multiple job steps, whether commands should be read from a file or STDIN, and

how the partition should be loaded.

v I/O control. The environment variables and flags in this category determine how

I/O from the parallel tasks should be handled. These environment variables and

flags set the input and output modes, and determine whether or not output is

labeled by task id.

v Generation of diagnostic information. The environment variables and flags in

this category enable you to generate diagnostic information that may be required

by the IBM Support Center in resolving PE-related problems.

v Message Passing Interface. The environment variables and flags in this

category enable you to specify values for tuning message passing applications.

v Corefile generation. The environment variables and flags in this category

govern aspects of corefile generation including the directory name into which

corefiles will be saved, or the corefile format (standard AIX or lightweight).

poe

Appendix A. Parallel Environment commands 117

|
|

v Miscellaneous. The additional environment variables and flags in this category

enable additional error checking, and set a dispatch priority class for execution.

ENVIRONMENT VARIABLES

The environment variable descriptions in this section are grouped by function.

The following environment variables are associated with Partition Manager control.

MP_ADAPTER_USE

Determines how the node’s adapter should be used. The User Space

communication subsystem library does not require dedicated use of the

high performance interconnect switch on the node. Adapter use will be

defaulted, as in “Step 3b: Create a host list file” on page 16, but shared

usage may be specified. Valid values are dedicated and shared. If not set,

the default is dedicated for User Space jobs, or shared for IP jobs. The

value of this environment variable can be overridden using the

-adapter_use flag.

MP_CPU_USE

Determines how the node’s CPUs should be used. The User Space

communication subsystem library does not require unique CPU use on the

node. CPU use will be defaulted, as in “Step 3b: Create a host list file” on

page 16, but multiple use may be specified. Valid values are multiple and

unique. If not set, the default is unique for User Space jobs, or multiple for

IP jobs. The value of this environment variable can be overridden using the

-cpu_use flag.

MP_EUIDEVICE

Determines the adapter set to use for message passing. Valid values are

en0 (for Ethernet), fi0 (for FDDI), tr0 (for token-ring), css0 (for the pSeries

High Performance Switch feature), csss (for the SP switch 2 high

performance adapter), sn_all, and sn_single for the pSeries High

Performance Switch.

MP_EUILIB

Determines the communication subsystem implementation to use for

communication either the IP communication subsystem or the User Space

communication subsystem. In order to use the User Space communication

subsystem, you must have a system configured with its high performance

switch feature. Valid, case-sensitive, values are ip (for the IP

communication subsystem) or us (for the User Space communication

subsystem). The value of this environment variable can be overridden using

the -euilib flag.

MP_EUILIBPATH

Determines the path to the message passing and communication

subsystem libraries. This only needs to be set if an alternate library path is

desired. Valid values are any path specifier. The value of this environment

variable can be overridden using the -euilibpath flag.

MP_HOSTFILE

Determines the name of a host list file for node allocation. Valid values are

any file specifier. If not set, the default is host.list in your current directory.

The value of this environment variable can be overridden using the

-hostfile or -hfile flags.

MP_PROCS

Determines the number of program tasks. Valid values are any number from

poe

118 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

1 to 8192. If not set, the default is 1. The value of this environment variable

can be overridden using the -procs flag.

MP_PULSE

The interval (in seconds) at which POE checks the remote nodes to ensure

that they are communicating with the home node. The default interval is 600

seconds (10 minutes). To disable the pulse function, specify an interval of 0

(zero) seconds. The pulse function is automatically disabled when running

the pdbx debugger. You can override the value of this environment variable

with the -pulse flag.

MP_ RDMA_COUNT

Specifies the number of user rCxt blocks. It supports the specification of

multiple values when multiple protocols are involved. The format can be one

of the following:

v MP_RDMA_COUNT=m for a single protocol

v MP_RDMA_COUNT=m,n for multiple protocols. Only for when

MP_MSG_API=mpi.lapi – the values are positional, m is for MPI, n for

LAPI.

Note that the MP_RDMA_COUNT/–rdma_count option signifies the

number of rCxt blocks the user has requested for the job, and it is up to

LoadLeveler to determine the actual number of rCxt blocks that will be

allocated for the job. POE uses the value of MP_RDMA_COUNT to specify

the number of rCxt blocks requested on the LoadLeveler MPI and/or LAPI

network information when the job is submitted.

 The MP_RDMA_COUNT specification only has meaning for LAPI

applications. When MP_RDMA_COUNT is specified for MPI applications

(either when MP_MSG_API is explicitly set or defaults to mpi), POE issues

a warning message that the MP_RDMA_COUNT specification is

unnecessary.

 Use of the MP_RDMA_COUNT specification applies to PE Version 4

Release 2 in AIX Version 5 Release 3 environments only.

MP_REMOTEDIR

Specifies the name of a script which echoes the name of the current

directory to be used on the remote nodes. By default, the current directory

is the current directory at the time that POE is run. You may need to specify

this if the AutoMount Daemon is used to mount user file systems, and the

user is not using the Korn shell.

 The script mpamddir is provided for mapping the C shell directory name to

an AutoMount Daemon name.

MP_RESD

Determines whether or not the Partition Manager should connect to

LoadLeveler to allocate nodes. Valid values are either yes or no, and there

is no default. The value of this environment variable can be overridden

using the -resd flag.

MP_RETRY

The period of time (in seconds) between processor node allocation retries

by POE if there are not enough processor nodes immediately available to

run a program. This is valid only if you are using LoadLeveler. If the (case

insensitive) character string wait is specified instead of a number, no retries

are attempted by POE, and the job remains enqueued in LoadLeveler until

LoadLeveler either schedules the job or cancels it.

poe

Appendix A. Parallel Environment commands 119

MP_RETRYCOUNT

The number of times (at the interval set by MP_RETRY) that the partition

manager should attempt to allocate processor nodes. This value is ignored

if MP_RETRY is set to the character string wait.

MP_MSG_API

To indicate to POE which message-passing API is being used by the

parallel tasks. MPI indicates to use MPI protocol only. LAPI indicates to use

LAPI protocol only. MPI_LAPI indicates that both protocols are used,

sharing the same set of communication resources (windows, UDP ports).

MPI, LAPI indicates that both protocols are used, with dedicated resources

assigned to each of them. LAPI, MPI has a meaning identical to MPI, LAPI.

MP_RMPOOL

Determines the name or number of the pool that should be used for

nonspecific node allocation. This environment variable/command line flag

only applies to LoadLeveler. Valid values are any identifying pool name or

number. There is no default. The value of this environment variable can be

overridden using the -rmpool flag.

MP_NODES

Specifies the number of physical nodes on which to run the parallel tasks. It

may be used alone or in conjunction with MP_TASKS_PER_NODE and/or

MP_PROCS, as described in “Step 3h: Set the MP_RMPOOL environment

variable” on page 26. The value of this environment variable can be

overridden using the -nodes flag.

MP_TASKS_PER_NODE

Specifies the number of tasks to be run on each of the physical nodes. It

may be used in conjunction with MP_NODES and/or MP_PROCS, as

described in “Step 3h: Set the MP_RMPOOL environment variable” on page

26, but may not be used alone. The value of this environment variable can

be overridden using the -tasks_per_node flag.

MP_SAVEHOSTFILE

The name of an output host list file to be generated by the Partition

Manager. Valid values are any relative or full path name. The value of this

environment variable can be overridden using the -savehostfile flag.

MP_TIMEOUT

Controls the length of time POE waits before abandoning an attempt to

connect to the remote nodes. The default is 150 seconds.

MP_CKPTDIR

Defines the directory where the checkpoint files will reside when

checkpointing a program. See “Checkpointing and restarting programs” on

page 45 for more information.

MP_CKPTFILE

Defines the base name of the checkpoint file when checkpointing a

program. See “Checkpointing and restarting programs” on page 45 for more

information.

MP_CKPTDIR_PERTASK

Specifies whether the checkpoint files of the parallel tasks should be written

to separate subdirectories under the directory that is specified by

MP_CKPTDIR. The default is no.

 The subdirectories must exist prior to invoking the parallel checkpoint.

Using separate subdirectories may provide better performance when using

a shared/parallel file system (for example, GPFS) for checkpointing from

poe

120 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|

|
|
|
|

more than 128 nodes, depending on the specifics of the file system,

checkpoint file size, and other factors. The subdirectory name used for each

task is its task number.

The following environment variables are associated with Job Specification.

MP_CMDFILE

Determines the name of a POE commands file used to load the nodes of

your partition. If set, POE will read the commands file rather than STDIN.

Valid values are any file specifier. The value of this environment variable

can be overridden using the -cmdfile flag.

MP_INSTANCES

The number of instances of User Space windows or IP addresses to be

assigned per task per protocol per network. This value is expressed as an

integer, or the string max. If the value specified exceeds the maximum

allowed number of instances, as determined by LoadLeveler, the true

maximum number determined is substituted.

MP_LLFILE

Determines the name of a LoadLeveler job command file for node

allocation. If you are performing specific node allocation, you can use a

LoadLeveler job command file in conjunction with a host list file. If you do,

the specific nodes listed in the host list file will be requested from

LoadLeveler. Valid values are any relative or full path name. The value of

this environment variable can be overridden using the -llfile environment

variable.

MP_NEWJOB

Determines whether or not the Partition Manager maintains your partition

for multiple job steps. Valid values are yes or no. If not set, the default is

no. The value of this environment variable can be overridden using the

-newjob flag.

MP_PGMMODEL

Determines the programming model you are using. Valid values are spmd

or mpmd. If not set, the default is spmd. The value of this environment

variable can be overridden using the -pgmmodel flag.

MP_SAVE_LLFILE

When using LoadLeveler for node allocation, the name of the output

LoadLeveler job command file to be generated by the Partition Manager.

The output LoadLeveler job command file will show the LoadLeveler

settings that result from the POE environment variables and/or command

line options for the current invocation of POE. If you use the

MP_SAVE_LLFILE environment variable for a batch job, or when the

MP_LLFILE environment variable is set (indicating that a LoadLeveler job

command file should participate in node allocation), POE will show a

warning and will not save the output job command file. Valid values are any

relative or full path name. The value of this environment variable can be

overridden using the -save_llfile flag.

MP_TASK_AFFINITY

Setting this environment variable causes the PMD to attach each task of a

parallel job to one of the system resource sets at the MCM level. This

constrains the task, and all its threads, to run within that MCM. If the task

has an inherited resource set, the attach honors the constraints of the

inherited resource set. When POE is run under LoadLeveler 3.3.1 or later

(which includes all User Space jobs), POE relies on LoadLeveler to handle

poe

Appendix A. Parallel Environment commands 121

scheduling affinity, based on LoadLeveler job control file keywords that POE

sets up in submitting the job. Memory and task affinity must be enabled in

the LoadLeveler configuration file (using the RSET_SUPPORT keyword).

With interactive POE jobs, the possible MP_TASK_AFFINITY values are:

v MP_TASK_AFFINITY=MCM – the tasks are allocated in a round-robin

fashion among the MCM’s attached to the job by WLM. By default, the

tasks are allocated to all the MCMs in the node. When run under

LoadLeveler 3.3.1 or later, POE sets the LoadLeveler

MCM_AFFINITY_OPTIONS and RSET keywords to allow LoadLeveler to

handle scheduling affinity, as follows:

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_MEM_PREF,

MCM_SNI_NONE, and MCM_DISTRIBUTE

– Sets the RSET keyword to RSET_MCM_AFFINITY.

v MP_TASK_AFFINITY=SNI – the tasks are allocated to the MCM in

common with the first adapter assigned to the task by LoadLeveler. This

applies only to User Space MPI jobs. MP_TASK_AFFINITY=SNI should

not be specified for IP jobs. When run under LoadLeveler 3.3.1 or later,

POE sets the LoadLeveler MCM_AFFINITY_OPTIONS and RSET

keywords to allow LoadLeveler to handling scheduling affinity, as follows:

– Sets the MCM_AFFINITY_OPTIONS keyword to MCM_SNI_PREF,

and MCM_DISTRIBUTE

– Sets the RSET keyword to RSET_MCM_AFFINITY.

v MP_TASK_AFFINITY=mcm-list – tasks are assigned on a round-robin

basis to this set, within the constraint of an inherited RSET, if any.

mcm-list specifies a set of system level (LPAR) logical MCMs that can

be attached to. Attaches to any MCMs outside the constraint set will be

attempted, but will fail. If a single MCM number is specified as the list, all

tasks are assigned to that MCM. This option is only valid when running

either without LoadLeveler, or with LoadLeveler Version 3.2 (or earlier)

that does not support scheduling affinity.

v When a value of -1 is specified, no affinity request will be made

(effectively this disables task affinity).

Note: The MP_TASK_AFFINITY settings are ignored for batch jobs. If a

batch job requires memory affinity, the LoadLeveler RSET and

MCM_AFFINITY_OPTIONS keywords need to be specified. Refer to

IBM Tivoli Workload Scheduler LoadLeveler: Using and

Administering for more information.

The following environment variables are associated with STDIO Control.

MP_LABELIO

Determines whether or not output from the parallel tasks are labeled by

task id. Valid values are yes or no. If not set, the default is no. The value of

this environment variable can be overridden using the -labelio flag.

MP_STDINMODE

Determines the input mode how STDIN is managed for the parallel tasks.

Valid values are:

all all tasks receive the same input data from STDIN.

none no tasks receive input data from STDIN; STDIN will be used by the

home node only.

n STDIN is only sent to the task identified (n).

poe

122 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|
|
|
|

If not set, the default is all. The value of this environment variable can be

overridden using the -stdinmode flag.

MP_STDOUTMODE

Determines the output mode how STDOUT is handled by the parallel tasks.

Valid values are:

unordered

all tasks write output data to STDOUT asynchronously.

ordered

output data from each parallel task is written to its own buffer. Later,

all buffers are flushed, in task order, to STDOUT.

a task id

only the task indicated writes output data to STDOUT.

If not set, the default is unordered. The value of this environment variable

can be overridden using the -stdoutmode flag.

The following environment variables are associated with the generation of

diagnostic information.

MP_INFOLEVEL

Determines the level of message reporting. Valid values are:

0 error

1 warning and error

2 informational, warning, and error

3 informational, warning, and error. Also reports diagnostic messages

for use by the IBM Support Center.

4, 5, 6

Informational, warning, and error. Also reports high- and low-level

diagnostic messages for use by the IBM Support Center.

If not set, the default is 1 (warning and error). The value of this environment

variable can be overridden using the -infolevel or -ilevel flag.

MP_PMDLOG

Determines whether or not diagnostic messages should be logged to a file

in /tmp on each of the remote nodes. Typically, this environment

variable/command line flag is only used under the direction of the IBM

Support Center in resolving a PE-related problem. Valid values are yes or

no. If not set, the default is no. The value of this environment variable can

be overridden using the -pmdlog flag.

MP_PRINTENV

Use this environment variable to activate generating a report on the parallel

environment setup for the MPI job at hand. The report is printed to

STDOUT. The printing of this report will have no adverse effect on the

performance of the MPI program. The value can also be a user-specified

script name, the output of which will be added to end of the normal

environment setup report.

 The allowable values for MP_PRINTENV are:

no Do not produce a report of environment variable settings. This is

the default value.

poe

Appendix A. Parallel Environment commands 123

yes Produce a report of MPI environment variable settings. This report

is generated when MPI job initialization is complete.

script_name

Produce the report (same as yes), then append the output of the

script specified here.

MP_STATISTICS

Provides the ability to gather MPI and LAPI communication statistics for

MPI user space jobs. Valid values are yes, no and print. If not set, the

default is no and the values are not case sensitive. The MPI statistical

information can be used to get a summary on the network usage at the end

of the MPI job and to check the progress of inter-job message passing

during the execution of an MPI program. To get a summary of the network

usage, use print. A list of MPI statistical information will be printed when

MPI_Finalize is called.To check the progress of inter-job message passing,

use yes and the MPI nonstandard functions ’mpci_statistics_write’ and

’mpci_statistics_zero’. The calls must be inserted strategically into the MPI

program, and a program that contains them will not be portable to other

MPI implementations. The ’mpci_statistics_write’ is for printing out the

current counters and the ’mpci_statistics_zero’ function is for zeroing the

counters. These function prototypes are:

int mpci_statistics_zero(void)

int mpci_statistics_write(FILE *fptr)

Note: Activating MPCI statistics may have a slight impact on performance

of the MPI program.

MP_DEBUG_INITIAL_STOP

Determines the initial breakpoint in the application where pdbx will get

control. MP_DEBUG_INITIAL_STOP should be specified as

file_name:line_number. The line_number is the number of the line within the

source file file_name; where file_name has been compiled with -g. The line

number has to be one that defines executable code. In general, this is a

line of code for which the compiler generates machine level code. Another

way to view this is that the line number is one for which debuggers will

accept a breakpoint. Another valid string for MP_DEBUG_INITIAL_STOP

would be the function_name of the desired initial stopping point in the

debugger. If this variable is not specified, the default is to stop at the first

executable source line in the main routine. This environment variable has

no associated command line flag.

MP_DEBUG_NOTIMEOUT

A debugging aid that allows programmers to attach to one or more of their

tasks without the concern that some other task may reach the LAPI timeout.

Such a timeout would normally occur if one of the job tasks was continuing

to run, and tried to communicate with a task to which the programmer has

attached using a debugger. With this flag set, LAPI will never timeout and

continue retransmitting message packets forever. The default setting is

false, allowing LAPI to timeout.

 The following environment variables are associated with the Message Passing

Interface.

MP_UDP_PACKET_SIZE

Allows the user to control the LAPI UDP datagram size. Specify a positive

integer.

poe

124 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|

|

|
|
|
|

MP_ACK_THRESH

Allows the user to control the LAPI packet acknowledgement threshold.

Specify a positive integer, no greater than 31. The default is 30.

MP_BUFFER_MEM

Specifies the size of the Early Arrival (EA) buffer that is used by the

communication subsystem to buffer eager send messages that arrive before

there is a matching receive posted. This value can also be specified with

the -buffer_mem command line flag. The command line flag will override a

value set with the environment variable.

 This environment variable can be used in one of two ways:

v Specify the size of a preallocated EA buffer and have PE/MPI guarantee

that no valid MPI application can require more EA buffer space than is

preallocated. For applications without very large tasks counts or with

modest memory demand per task, this form is almost always sufficient.

v Specify the size of a preallocated EA buffer and the maximum size that

PE/MPI will guarantee the buffer can never exceed. Aggressive use of

EA space is rare in real MPI applications but when task counts are large,

the need for PE/MPI to enforce an absolute guarantee may compromise

performance. Specifying a preallocated EA buffer that is big enough for

the application’s real needs but an upper bound that loosens

enforcement may provide better performance in some cases, but those

cases will not be common.

The default values for preallocated EA space are 64 MB when running with

either User Space or IP. (In prior versions of PE for AIX, the preallocation

for IP was 2.8 MB which often limited performance. The increase to 64 MB

can cause some applications that ran before to fail in a malloc. Such

applications can be recompiled with more heap, or can be run by

experimenting with MP_BUFFER_MEM settings below 64 MB.)

 To evaluate whether overriding MP_BUFFER_MEM defaults for a particular

application is worthwhile, use MP_STATISTICS. This tells you whether

there is significantly more EA buffer space allocated than is used or whether

EA space limits are creating potential performance impacts by forcing some

messages that are smaller than the eager limit to use rendezvous protocol

because EA buffer cannot be guaranteed.

 The value of MP_BUFFER_MEM can be overridden with the -buffer_mem

command line flag.

 The MP_BUFFER_MEM default value can be defined by the system

administrator in the /etc/poe.limits file as described in IBM Parallel

Environment: Installation Guide. If you have not specified

MP_BUFFER_MEM, and it is set in /etc/poe.limits, the default value is set

based on the value in /etc/poe.limits.

 For more information about MP_BUFFER_MEM see “Using

MP_BUFFER_MEM” on page 54. For information about buffering eager

send messages, see IBM Parallel Environment: MPI Programming Guide.

MP_CC_SCRATCH_BUF

Specifies whether MPI should always use the fastest collective

communication algorithm when there are alternatives that require less

scratch buffer. In some cases, the faster algorithm needs to allocate more

scratch buffers and therefore, consumes more memory than a slower

poe

Appendix A. Parallel Environment commands 125

|
|
|
|
|
|

algorithm. The default value is yes, which means that you want MPI to

choose an algorithm that has the shortest execution time, even though it

may consume extra memory. A value of no specifies that MPI should

choose the algorithm that uses less memory. Note that restricting MPI to the

algorithm that uses the least memory normally sacrifices performance in

exchange for that memory savings, so a value of no should be specified

only when limiting memory usage is critical.

 The value of MP_CC_SCRATCH_BUF can be overridden with the

-cc_scratch_buf command line flag.

MP_CLOCK_SOURCE

Determines whether or not to use the switch clock as a time source. Valid

values are AIX and switch. There is no default value. The value of this

environment variable can be overridden using the -clock_source flag.

MP_CSS_INTERRUPT

Determines whether or not arriving message packets cause interrupts. This

may provide better performance for certain applications. Valid values are

yes and no. If not set, the default is no.

MP_EAGER_LIMIT

Changes the threshold value for message size, above which rendezvous

protocol is used.

 If the MP_EAGER_LIMIT environment variable is not set during

initialization, MPI automatically chooses a default eager limit value, based

on the number of tasks, as follows.

Number of

Tasks MP_EAGER_LIMIT

 1 to 256 32768

 257 to 512 16384

 513 to 1024 8192

1025 to 2048 4096

2049 to 4096 2048

4097 to 8192 1024

Consider running a new application once with eager limit set to 0 (zero)

because this is useful for confirming that an application is safe, but normally

higher eager limit gives better performance. Note that a safe application, as

defined by the MPI standard, is one that does not depend on some

minimum of MPI buffer space to avoid deadlock.

 The maximum value for MP_EAGER_LIMIT is 256K (262144 bytes). Any

value that is less than 64 bytes but greater than zero bytes is automatically

increased to 64 bytes. A non-power of 2 value will be rounded up to the

nearest power of 2. A value may be adjusted if the early arrival buffer

(MP_BUFFER_MEM) size is set too small.

 For information about buffering eager send messages and eager limit, see

IBM Parallel Environment: MPI Programming Guide.

MP_HINTS_FILTERED

Determines whether MPI info objects reject hints (key/value pairs) which are

not meaningful to the MPI implementation. In filtered mode, an

MPI_INFO_SET call which provides a key/value pair that the

implementation does not understand will behave as a no-op. A subsequent

MPI_INFO_GET call will find that the hint does not exist in the info object.

poe

126 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

In unfiltered mode, any key/value pair is stored and may be retrieved.

Applications which wish to use MPI info objects to cache and retrieve

key/value pairs other than those actually understood by the MPI

implementation must use unfiltered mode. The option has no effect on the

way MPI uses the hints it does understand. In unfiltered mode, there is no

way for a program to discover which hints are valid to MPI and which are

simply being carried as uninterpreted key/value pairs.

 Providing an unrecognized hint is not an error in either mode.

 Valid values for this environment variable are yes and no. If set to yes,

unrecognized hints are be filtered. If set to no, they will not. If this

environment variable is not set, the default is yes. The value of this

environment variable can be overridden using the -hints_filtered command

line flag.

MP_IONODEFILE

The name of a parallel I/O node file — a text file that lists the nodes that

should be handling parallel I/O. This enables you to limit the number of

nodes that participate in parallel I/O, guarantee that all I/O operations are

performed on the same node, and so on. Valid values are any relative or

full path name. If not specified, all nodes will participate in parallel I/O

operations. The value of this environment variable can be overridden using

the -ionodefile command line flag.

MP_MSG_ENVELOPE_BUF

Changes the size of the message envelope buffer. You can specify any

positive number. There is no upper limit, but any value less than 1 MB is

ignored. MPI preallocates the message envelope buffer with a default size

of 8 MB. The MPI statistics function prints out the message envelope buffer

usage which you can use to determine the best envelope buffer size for a

particular MPI program.

 The envelope buffer is used for storing both send and receive descriptors.

An MPI_Isend or unmatched MPI_Irecv posting creates a descriptor that

lives until the MPI_Wait completes. When a message arrives and finds no

match, an early arrival descriptor is created that lives until a matching

receive is posted and that receive completes in an MPI_Wait. For any

message at the destination, there will be only one descriptor; either the one

created at the MPI_Irecv call or the one created at the early arrival. The

more uncompleted MPI_Irecv and MPI_Isend operations an application

maintains, the higher the envelope buffer requirement. Most applications will

have no reason to adjust the size of this buffer.

 The value of MP_MSG_ENVELOPE_BUF can be overridden with the

-msg_envelope_buf command line flag.

MP_LAPI_TRACE_LEVEL

Used in conjunction with AIX tracing for debug purposes. Levels 0-6 are

supported.

MP_SHARED_MEMORY

To specify the use of shared memory (instead of the network) for message

passing between tasks running on the same node. The default value is yes.

Note: In past releases, the MP_SHM_CC environment variable was used

to enable or disable the use of shared memory for certain 64-bit MPI

collective communication operations. Beginning with the PE 4.2

release, this environment variable has been removed. You should

now use MP_SHARED_MEMORY to enable shared memory for both

poe

Appendix A. Parallel Environment commands 127

collective communication and point-to-point routines. The default

setting for MP_SHARED_MEMORY is yes (enable shared memory).

MP_USE_BULK_XFER

Exploit the high performance switch bulk data transfer mechanism. This

variable does not have any meaning and is ignored in other environments.

 Before you can use MP_USE_BULK_XFER, the system administrator must

first enable Remote Direct Memory Access (RDMA). For more information,

see IBM Parallel Environment: Installation.

 Valid values are yes and no. If not set, the default is no.

 Note that when you use MP_USE_BULK_XFER, you also need to consider

the value of the MP_BULK_MIN_MSG_SIZE environment variable.

Messages with data lengths that are greater than the value specified for

MP_BULK_MIN_MSG_SIZE will use the bulk transfer path, if it is available.

See the description of MP_BULK_MIN_MSG_SIZE for more information.

MP_BULK_MIN_MSG_SIZE

Set the minimum message length for bulk transfer. Contiguous messages

with data lengths greater than or equal to the value you specify for this

environment variable will use the bulk transfer path, if it is available.

Messages with data lengths that are smaller than the value you specify for

this environment variable, or are noncontiguous, will use packet mode

transfer.

 The valid range of values is from 4096 to 2147483647 (INT_MAX). The size

can be expressed in one of the following ways:

v As a number of bytes

v As a number of KB (1024 bytes), using the letter k as a suffix

v As a number of MB (1024 * 1024 bytes), using the letter m as a suffix

v As a number of GB (1024 * 1024 * 1024 bytes), using the letter g as a

suffix.

The default value is 153600.

MP_THREAD_STACKSIZE

Determines the additional stacksize allocated for user programs executing

on an MPI service thread. If you allocate insufficient space, the program

may encounter a SIGSEGV exception.

MP_SINGLE_THREAD

Avoids mutex lock overheads in a single threaded user program. This is an

optimization flag, with values of no and yes. The default value is no, which

means the potential for multiple user message passing threads is assumed.

Note: MPI-IO, nonstandard MPE_I nonblocking collective communications, and

MPI-1SC (MPI One Sided Communication) cannot be used when

MP_SINGLE_THREAD is set to yes. An application that tries to use

nonstandard MPE_I nonblocking collective communications, MPI-IO, or

MPI-1SC with MP_SINGLE_THREAD=yes will be terminated. MPI calls from

multiple user threads cannot be detected and will lead to unpredictable

results. MP_SINGLE_THREAD may help applications that use many small

point-to-point messages, but is less likely to help when the norm is larger

messages or collective communication.

poe

128 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|
|
|

MP_WAIT_MODE

To specify how a thread or task behaves when it discovers it is blocked,

waiting for a message to arrive.

MP_RETRANSMIT_INTERVAL

MP_RETRANSMIT_INTERVAL=nnnnn and its command line equivalent,

-retransmit_interval=nnnnn, control how often the communication

subsystem library checks to see if it should retransmit packets that have not

been acknowledged. The value nnnnn is the number of polling loops

between checks. The acceptable range is 1000 to 400000. The default is

10000 for UDP and 400000 for User Space.

MP_IO_BUFFER_SIZE

Indicates the default size of the data buffer used by MPI-IO agents. For

example:

export MP_IO_BUFFER_SIZE=16M

sets the default size of the MPI-IO data buffer to 16MB. The default value of

the environment variable is the number of bytes corresponding to 16 file

blocks. This value depends on the block size associated with the file system

storing the file. Valid values are any positive size up to 128MB. The size

can be expressed as a number of bytes, as a number of KB (1024 bytes),

using the letter k as a suffix, or as a number of MB (1024 * 1024 bytes),

using the letter m as a suffix.

MP_IO_ERRLOG

Indicates whether to turn on error logging for I/O operations. For example:

export MP_IO_ERRLOG=yes

turns on error logging. When an error occurs, a line of information will be

logged into file /tmp/mpi_io_errdump.app_name.userid.taskid, recording the

time the error occurs, the POSIX file system call involved, the file

descriptor, and the returned error number.

MP_REXMIT_BUF_SIZE

The maximum message size which LAPI will store in its local buffers so as

to more quickly free up the user buffer containing message data. This size

indicates the size of the local buffers LAPI will allocate to store such

messages, and will impact memory usage, while potentially improving

performance. Messages larger than this size will continue to be transmitted

by LAPI; the only difference is that user buffers will not become available

for the user to reuse until the message data has been acknowledged as

received by the target. The default user message size is 16352 bytes.

MP_REXMIT_BUF_CNT

The number of buffers that LAPI must allocate for each target job, each

buffer being of the size defined by MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This count indicates the number of in-flight

messages that LAPI can store in its local buffers so as to free up the user’s

message buffers. If there are no more message buffers left, LAPI will still

continue transmission of messages; the only difference is that user buffers

will not become available for the user to reuse until the message data has

been acknowledged as received by the target. The default number of

buffers is 128.

The following are corefile generation environment variables:

MP_COREDIR

Creates a separate directory for each task’s core file. The value of this

poe

Appendix A. Parallel Environment commands 129

environment variable can be overridden using the -coredir flag. A value of

″none″ signifies to bypass creating a new directory resulting in core files

written to /tmp.

MP_COREFILE_FORMAT

Determines the format of corefiles generated when processes terminate

abnormally. If not set, POE will generate standard AIX corefiles. If set to the

string ″STDERR″, output will go to standard error. If set to any other string,

POE will generate a lightweight corefile (conforming to the Parallel Tool

Consortium’s Standardized Lightweight Corefile Format) for each process in

your partition. The string you specify is the name you want to assign to

each lightweight corefile. By default, these lightweight corefiles will be

saved to subdirectories prefixed by the string coredir and suffixed by the

task id (as in coredir.0, coredir.1, and so on). You can specify a prefix other

than the default coredir by setting the MP_COREDIR environment variable.

The value of this environment variable can be overridden using the

-corefile_format flag.

MP_COREFILE_SIGTERM

Determines if POE should generate a corefile when a SIGTERM signal is

received. Valid values are yes and no. If not set, the default is no.

The following are miscellaneous environment variables:

MP_EUIDEVELOP

Determines whether PE MPI performs less, normal, or more detailed

checking during execution. The additional checking is intended for

developing applications, and can significantly slow performance. Valid

values are yes or no, deb (for “debug”), nor (for “normal”), and min (for

“minimum”). The min value shuts off parameter checking for all send and

receive operations, and may improve performance, but should be used only

with applications that are very well-validated. If not set, the default is no.

The value of this environment variable can be overridden using the

-euidevelop flag.

MP_FENCE

Determines a fence_string to be used for separating options you want

parsed by POE from those you do not. Valid values are any string, and

there is no default. Once set, you can then use the fence_string followed by

additional_options on the poe command line. The additional_options will not

be parsed by POE. This environment variable has no associated command

line flag.

MP_NOARGLIST

Determines whether or not POE ignores the argument list. Valid values are

yes and no. If set to yes, POE will not attempt to remove POE command

line flags before passing the argument list to the user’s program. This

environment variable has no associated command line flag.

MP_PRIORITY

Determines a coscheduler dispatch parameter set for execution. See

“Improving Application Scalability Performance” on page 80 for more

information on coscheduler parameters. Valid values are any of the dispatch

priority classes set up by the system administrator in the file

/etc/poe.priority, or a string of threshold values, as controlled by the

/etc/poe.priority file contents. This environment variable has no associated

command line flag.

poe

130 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

MP_PRIORITY_LOG

Determines whether diagnostic messages should be logged to the POE

priority adjustment coscheduler log file in /tmp/pmadjpri.log on each of the

remote nodes. This variable should only be used in conjunction with the

POE coscheduler MP_PRIORITY variable. Valid values are yes or no. If not

set, the default is yes. The value of this environment variable can be

overridden using the -priority_log flag. See “POE priority adjustment

coscheduler” on page 80 for more information on the POE coscheduler.

MP_PRIORITY_NTP

Determines whether the POE priority adjustment coscheduler will turn NTP

off during the priority adjustment period, or leave it running. Valid values are

yes or no. The value of no (which is the default) instructs the POE

coscheduler to turn the NTP daemon off (if it was running) and restart NTP

later, after the coscheduler completes. Specify a value of yes to inform the

coscheduler to keep NTP running during the priority adjustment cycles (if

NTP was not running, NTP will not be started). If MP_PRIORITY_NTP is

not set, the default is no. The value of this environment variable can be

overridden using the -priority_ntp flag. See “POE priority adjustment

coscheduler” on page 80 for more information on the POE coscheduler.

MP_TLP_REQUIRED

Specifies to POE whether to check to see if jobs being executed have been

compiled for large pages, and when it finds a job that was not, the action to

take. Using this variable helps avoid system failures, on systems with a

high percentage of memory configured as large pages, related to the

execution of large memory parallel jobs that were not compiled for large

pages. Valid values are none, warn, and kill. When you set

MP_TLP_REQUIRED to warn, POE detects and issues a warning message

for any job that was not compiled for large pages. Setting

MP_TLP_REQUIRED to kill causes POE to detect and kill any job that was

not compiled for large pages. The default is none (POE takes no action).

EXAMPLES

1. Assume the MP_PGMMODEL environment variable is set to spmd, and

MP_PROCS is set to 6. To load and execute the SPMD program sample on the

six remote nodes of your partition, enter:

poe sample

2. Assume you have an MPMD application consisting of two programs; master and

workers. These programs are designed to run together and communicate via

calls to message passing subroutines. The program master is designed to run

on one processor node. The workers program is designed to run as separate

tasks on any number of other nodes. The MP_PGMMODEL environment

variable is set to mpmd, and MP_PROCS is set to 6. To individually load the six

remote nodes with your MPMD application, enter:

poe

Once the partition is established, the poe command responds with the prompt:

0:host1_name>

To load the master program as task 0 on host1_name, enter:

master

poe

Appendix A. Parallel Environment commands 131

|
|
|
|
|
|
|
|
|
|
|

The poe command responds with a prompt for the next node to load. When you

have loaded the last node of your partition, the poe command displays the

message Partition loaded... and begins execution.

3. Assume you want to run three SPMD programs; setup, computation, and

cleanup – as job steps on the same partition of nodes. The MP_PGMMODEL

environment variable is set to spmd, and MP_NEWJOB is set to yes. You enter:

poe

Once the partition is established, the poe command responds with the prompt:

Enter program name (or quit):

To load the program setup, enter:

setup

The program setup executes on all nodes of your partition. When execution

completes, the poe command again prompts you for a program name. Enter the

program names in turn. To release the partition, enter:

quit

4. To check the process status (using the nonparallel command ps) for all remote

nodes in your partition, enter:

poe ps

FILES

host.list (Default host list file)

RELATED INFORMATION

Commands: mpcc_r(1), mpCC_r(1), mpxlf_r(1) , pdbx(1)

poe

132 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

poeckpt

NAME

poeckpt –takes a checkpoint of an interactive, non-LoadLeveler POE job.

SYNOPSIS

poeckpt [-?] [-H] [-k] [-u username] pid

FLAGS

-? Provides a short usage message.

-H Provides help information.

-k Specifies that the job is to be terminated after a successful checkpoint.

-u Specifies the owner of the resulting checkpoint file (used only when root

invokes the poeckpt command).

pid

The process id of the POE process for the job to be checkpointed.

DESCRIPTION

poeckpt will checkpoint an interactive POE job, ensuring that job is a

non-LoadLeveler POE job, running stand-alone. The process id specified

corresponds to the POE process id for the job to be checkpointed. If the process

specified is not a POE process or if a POE job is running under LoadLeveler, the

command will fail. If the terminate option is specified and the POE job cannot be

checkpointed, the terminate option is ignored and the POE job continues to run.

The poeckpt command will block until the checkpoint operation completes.

Interrupting this command by pressing Ctrl-c will cause the checkpoint to be

aborted.

This command must be run as the user who owns the specified process or as root.

When the -u flag is specified and the process is being run by root, poeckpt will

change the ownership of the checkpoint files to the user name specified. The -u

flag is ignored when poeckpt is run by a non-root user.

Return codes are:

0 Indicates success.

-1 Indicates failure. Occurs with error message(s) containing reasons for failure.

Note: For checkpoint failures, the primary errors reported are actual error numbers

as documented in /usr/include/sys/errno.h. The secondary errors provide

additional error information and are documented in /usr/include/sys/
chkerror.h. There may also be further error information reported in string

format as “error data”.

ENVIRONMENT VARIABLES

This command responds to the following environment variables:

poeckpt

Appendix A. Parallel Environment commands 133

|

||

MP_CKPTDIR

Defines the directory where the checkpoint file created by poeckpt will

reside. If unset, the default value is the directory from which poeckpt is run.

If the value of MP_CKPTDIR that is specified in the environment where

poeckpt is invoked is not the same as the value of MP_CKPTDIR in the

environment of the POE job being checkpointed, the checkpoint file of POE

may appear in a different directory than the task checkpoint files.

MP_CKPTFILE

Defines the base name of the checkpoint file created by poeckpt. If unset,

the default value is poeckpt.<PID>, where PID is the process ID of the POE

process being checkpointed. If the value of MP_CKPTFILE that is specified

in the environment where poeckpt is invoked is not the same as the value

of MP_CKPTFILE in the environment of the POE job being checkpointed,

the base name of the POE checkpoint file may be different than the base

name of the task checkpoint files.

poeckpt

134 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

poekill

NAME

poekill – terminates all remote tasks for a given program.

SYNOPSIS

poe poekill pgm_name [poe_options]

or

rsh remote_node poekill pgm_name

poekill is a Korn shell script that searches for the existence of running programs

(named pgm_name) owned by the user, and terminates them via SIGTERM

signals. If run under POE, poekill uses the standard POE mechanism for identifying

the set of remote nodes; host.list, LoadLeveler, and so on. If run under rsh, poekill

applies only to the node specified as remote_node.

FLAGS

When run as a POE program, standard POE flags apply.

DESCRIPTION

poekill determines the user id of the user that submitted the command. It then uses

the id to obtain a list of active processes, which is filtered by the pgm_name

argument into a scratch file in /tmp. The file is processed by an awk/gawk script

that sends a SIGTERM signal (15) to each process in the list, and echoes the

action back to the user. The scratch file is then erased, and the script exits with

code of 0.

If you do not provide a pgm_name, an error message is printed and the script exits

with a code of 1.

The pgm_name can be a substring of the program name.

RELATED INFORMATION

Commands: rsh(1), poe(1), kill(1)

poekill

Appendix A. Parallel Environment commands 135

poerestart

NAME

poerestart – is a command that can be used to restart an interactive POE job.

SYNOPSIS

poerestart [-?] [-H] [-s] file

FLAGS

-? Provides a short usage message.

-h Provides extended help information.

-s Specifies that the same hosts should be used for the restarted job as were

used for the job that was checkpointed.

file

The checkpoint file for the POE process.

DESCRIPTION

poerestart will restart a previously checkpointed interactive POE job, from the

checkpoint file specified. Only an interactive job, stand-alone or running under

LoadLeveler, can be restarted. A batch POE job cannot be restarted with this

command.

Interrupting the poerestart command by pressing Ctrl-c will cause the restart

operation to be aborted.

This command must be run as the user who owned the original checkpointed

process.

ENVIRONMENT VARIABLES

This command responds to the following environment variables:

MP_HOSTFILE

Specifies the name of the hostfile to be used. This setting is ignored if the

-s flag is specified.

MP_RMPOOL

Specifies the name of the LoadLeveler pool from which nodes will be

selected to restart the job. It is an error to use this specification if the

originally checkpointed POE job was not being run under LoadLeveler. This

setting is ignored if:

v The -s flag is specified.

v MP_HOSTFILE is set.

v A host.list file exists in the directory from which the command is run.

v MP_LLFILE is set.

MP_LLFILE

Specifies the name of the LoadLeveler job command file to be used for

specification of the restarted job. This must be specified if the originally

checkpointed POE job used the -llfile command line option or the

MP_LLFILE environment variable for job specification. This cannot be used

poerestart

136 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

||

if the originally checkpointed POE job did not use the -llfile command line

option or the MP_LLFILE environment variable for job specification.

NOTES

1. When restarting a non-LoadLeveler job, or a LoadLeveler job that does not use

MP_RMPOOL or MP_LLFILE, the hosts will be determined using the following:

v The -s flag.

v The MP_HOSTFILE environment variable.

v A host.list file.

2. When MP_LLFILE is not being used, one of the following must be true:

v The -s flag is specified.

v The MP_HOSTFILE environment variable is set.

v A host.list file exists in the directory from which the command is being run.

v The MP_RMPOOL environment variable is set.

3. The following may be used in conjunction with the MP_LLFILE environment

variable:

v The -s flag.

v The MP_HOSTFILE environment variable.

v A host.list file in the directory from which the command is being run.

4. Any POE environment variables other than those indicated above are not used

by the restarted POE.

5. The task geometry (tasks that are common within a node) for the restarted task

must be the same as the originally started task.

6. This command may not be used to restart from a checkpoint file of a POE batch

job. If the file provided to the poerestart command was generated from the

checkpoint of a batch POE job, the poerestart command will return with no

error message printed. The #@error file specified in the original batch job (if

present) will contain a message indicating that this error occurred.

Return codes are:

0 Indicates success.

-1 Indicates failure. Occurs with error message(s) containing reasons for failure.

poerestart

Appendix A. Parallel Environment commands 137

||

||

rset_query

NAME

rset_query – is a command that can be used to verify that memory affinity

assignments are performed.

SYNOPSIS

rset_query

DESCRIPTION

rset_query is used to verify that memory affinity assignments are performed, as an

extension of the POE and LoadLeveler scheduling affinity functions. For more

information, see “Managing task affinity on large SMP nodes” on page 48.

rset_query does not require any input or arguments. Output is written to STDERR.

EXAMPLES

1. To verify that memory affinity assignments have been performed, enter:

rset_query

You will see output similar to this:

[c61f1sq01][/u/voe3/pfc]> ./rset_query | pg

ra_getrset returned --- rc = 4

Number of available processors: 24

Number of available memory pools: 2

Amount of available memory: 23552 MB

Maximum system detail level: 5

SMP detail level: 2

MCM detail level: 3

 Processor 0 in resource set

 Processor 1 in resource set

 Processor 2 in resource set

 Processor 3 in resource set

 .

 . (lines omitted here to shorten example)

 .

Processor 254 in resource set

Processor 255 in resource set

numrads = 2

MCM detail:

Number of available memory pools: 2

Amount of available memory: 23552 MB

Maximum system detail level: 5

SMP detail level: 2

MCM detail level: 3

 Processor 0 in resource set

 Processor 1 in resource set

 Processor 2 in resource set

 Processor 3 in resource set

 Processor 4 in resource set

 Processor 5 in resource set

 Processor 6 in resource set

 Processor 7 in resource set

 Processor 8 in resource set

 Processor 9 in resource set

rset_query

138 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|

|

|
|

|

|
|

|

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Processor 10 in resource set

 Processor 11 in resource set

 Processor 12 in resource set

 Processor 13 in resource set

 Processor 14 in resource set

 Processor 15 in resource set

MCM 1 found:

Number of available processors: 8

Number of available memory pools: 2

Amount of available memory: 23552 MB

Maximum system detail level: 5

SMP detail level: 2

MCM detail level: 3

 Processor 16 in resource set

 Processor 17 in resource set

 Processor 18 in resource set

 Processor 19 in resource set

 Processor 20 in resource set

 Processor 21 in resource set

 Processor 22 in resource set

 Processor 23 in resource set

rset_query

Appendix A. Parallel Environment commands 139

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

rset_query

140 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Appendix B. POE Environment variables and command line

flags

PE includes a number of environment variables and command line flags you can

use to influence the execution of parallel programs and the operation of certain

tools. The command line flags temporarily override their associated environment

variables. The environment variables and command line flags shown here are

divided into tables, depending on the PE function to which they relate.

v Table 48 on page 142 summarizes the environment variables and flags for

controlling the Partition Manager. These environment variables and flags enable

you to specify such things as an input or output host list file, and the method of

node allocation. For a complete description of the variables and flags

summarized in this table, see Chapter 2, “Executing parallel programs,” on page

7.

v Table 49 on page 146 summarizes the environment variables and flags for Job

Specifications. These environment variables and flags determine whether or not

the Partition Manager should maintain the partition for multiple job steps, whether

commands should be read from a file or STDIN, and how the partition should be

loaded. For a complete description of the variables and flags summarized in this

table, see Chapter 2, “Executing parallel programs,” on page 7.

v Table 50 on page 148 summarizes the environment variables and flags for

determining how I/O from the parallel tasks should be handled. These

environment variables and flags set the input and output modes, and determine

whether or not output is labeled by task id. For a complete description of the

variables and flags summarized in this table, see “Managing standard input,

output, and error” on page 37.

v Table 51 on page 149 summarizes the environment variables and flags for

collecting diagnostic information. These environment variables and flags enable

you to generate diagnostic information that may be required by the IBM Support

Center in resolving PE-related problems.

v Table 52 on page 150 summarizes the environment variables and flags for the

Message Passing Interface. These environment variables and flags allow you to

change message and memory sizes, as well as other message passing

information.

v Table 53 on page 157 summarizes the variables and flags for core file

generation.

v Table 54 on page 158 summarizes some miscellaneous environment variables

and flags. These environment variables and flags enable additional error

checking and let you set a dispatch priority class for execution.

You can use the POE command line flags on the poe and pdbx commands. You

can also use the following flags on program names when individually loading nodes

from STDIN or a POE commands file.

v -infolevel or -ilevel

v -euidevelop

In the tables that follow, a check mark (U) denotes those flags you can use when

individually loading nodes. For more information on individually loading nodes, refer

to “Invoking an MPMD program” on page 29.

The table below summarizes the environment variables and flags for controlling the

Partition Manager. It includes information about how to set each variable, the values

that may be specified, and the default value. These environment variables and flags

© Copyright IBM Corp. 1993, 2006 141

|
|
|

enable you to specify such things as an input or output host list file, and the method

of node allocation. For a complete description of the variables and flags

summarized in this table, see Chapter 2, “Executing parallel programs,” on page 7.

 Table 48. POE environment variables and command line flags for partition manager control

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_ADAPTER_USE

-adapter_use

How the node’s adapter should be

used. The User Space communication

subsystem library does not require

dedicated use of the high performance

switch on the node. Adapter use will be

defaulted, as in “Step 3b: Create a host

list file” on page 16, but shared usage

may be specified.

One of the following

strings:

dedicated

Only a single

program task can

use the adapter.

shared A number of

tasks on the

node can use the

adapter.

Dedicated for

User Space jobs,

shared for IP

jobs.

MP_CPU_USE

-cpu_use

How the node’s CPU should be used.

The User Space communication

subsystem library does not require

unique CPU use on the node. CPU use

will be defaulted, as in “Step 3b: Create

a host list file” on page 16, but multiple

use may be specified.

For example, either one job per node

gets all CPUs, or more than one job

can go on a node.

One of the following

strings:

unique Only your

program’s tasks

can use the

CPU.

multiple

Your program

may share the

node with other

users.

Unique for User

Space jobs,

multiple for IP

jobs.

MP_EUIDEVICE

-euidevice

The adapter set to use for message

passing – either Ethernet, FDDI,

token-ring, the SP switch 2, or the

pSeries High Performance Switch,

One of the following

strings:

en0 Ethernet

fi0 FDDI

tr0 token-ring

css0 high performance

switch

csss SP switch 2

sn_all

sn_single

ml0

Or:

adapter device name or

network type string (as

configured in

LoadLeveler)

The adapter set

used as the

external network

address.

142 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|

Table 48. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_EUILIB

-euilib

The communication subsystem

implementation to use for

communication – either the IP

communication subsystem or the User

Space communication subsystem.

One of the following

strings:

ip The IP

communication

subsystem.

us The User Space

communication

subsystem.
Note: This specification

is case-sensitive.

ip

MP_EUILIBPATH

-euilibpath

The path to the message passing and

communication subsystem libraries.

This only needs to be set if the libraries

are moved, or an alternate set is being

used.

Any path specifier. /usr/lpp/ppe.poe/
lib

MP_HOSTFILE

-hostfile -hfile

The name of a host list file for node

allocation.

Any file specifier or the

word NULL.

host.list in the

current directory.

MP_INSTANCES

-instances

The number of instances of User

Space windows or IP addresses to be

assigned. This value is expressed as

an integer, or the string max. If the

values specified exceeds the maximum

allowed number of instances, as

determined by LoadLeveler, that

number is substituted.

A positive integer, or the

string max.

1

MP_PROCS

-procs

The number of program tasks. Any number from 1 to the

maximum supported

configuration.

1

MP_PULSE

-pulse

The interval (in seconds) at which POE

checks the remote nodes to ensure

that they are actively communicating

with the home node.

Note: Pulse is ignored for pdbx.

An integer greater than or

equal to 0.

600

MP_RESD

-resd

Whether or not the Partition Manager

should connect to LoadLeveler to

allocate nodes.

Note: When running POE from a

workstation that is external to the

LoadLeveler cluster, the LoadL.so file

set must be installed on the external

node (see Tivoli Workload Scheduler

LoadLeveler: Using and Administering

and IBM Parallel Environment:

Installation for more information).

yes no Context

dependent

Appendix B. POE Environment variables and command line flags 143

Table 48. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_RETRY

-retry

The period of time (in seconds)

between processor node allocation

retries by POE if there are not enough

processor nodes immediately available

to run a program. This is valid only if

you are using LoadLeveler. If the

character string wait is specified

instead of a number, no retries are

attempted by POE, and the job remains

enqueued in LoadLeveler until

LoadLeveler either schedules the job or

cancels it.

An integer greater than or

equal to 0, or the

case-insensitive value

wait.

0 (no retry)

MP_RETRYCOUNT

-retrycount

The number of times (at the interval set

by MP_RETRY) that the partition

manager should attempt to allocate

processor nodes. This value is ignored

if MP_RETRY is set to the character

string wait.

An integer greater than or

equal to 0.

0

MP_MSG_API

-msg_api

To indicate to POE which message

passing API is being used by the

application code.

MPI

Indicates that the application makes

only MPI calls.

LAPI

Indicates that the application makes

only LAPI calls.

MPI_LAPI

Indicates that calls to both message

passing APIs are used in the

application, and the same set of

communication resources (windows,

IP addresses) is to be shared

between them.

MPI,LAPI

Indicates that calls to both message

passing APIs are used in the

application, with dedicated

resources assigned to each of them.

LAPI,MPI

Has a meaning identical to

MPI,LAPI.

MPI

LAPI

MPI_LAPI

MPI,LAPI

LAPI,MPI

MPI

MP_RMPOOL

-rmpool

The name or number of the pool that

should be used for nonspecific node

allocation. This environment

variable/command line flag only applies

to LoadLeveler.

An identifying pool name

or number.

None

144 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Table 48. POE environment variables and command line flags for partition manager control (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_NODES

-nodes

To specify the number of processor

nodes on which to run the parallel

tasks. It may be used alone or in

conjunction with

MP_TASKS_PER_NODE and/or

MP_PROCS, as described in “Step 3h:

Set the MP_RMPOOL environment

variable” on page 26.

Any number from 1 to the

maximum supported

configuration.

None

MP_TASKS_PER_ NODE

-tasks_per_node

To specify the number of tasks to be

run on each of the physical nodes. It

may be used in conjunction with

MP_NODES and/or MP_PROCS, as

described in “Step 3h: Set the

MP_RMPOOL environment variable” on

page 26, but may not be used alone.

Any number from 1 to the

maximum supported

configuration.

None

MP_SAVEHOSTFILE

-savehostfile

The name of an output host list file to

be generated by the Partition Manager.

Any relative or full path

name.

None

MP_REMOTEDIR

(no associated command

line flag)

The name of a script which echoes the

name of the current directory to be

used on the remote nodes.

Any file specifier. None

MP_TIMEOUT

(no associated command

line flag)

The length of time that POE waits

before abandoning an attempt to

connect to the remote nodes.

Any number greater than

0. If set to 0 or a negative

number, the value is

ignored.

150 seconds

MP_CKPTFILE

(no associated command

line flag)

The base name of the checkpoint file. Any file specifier. See

“Checkpointing

and restarting

programs” on

page 45

MP_CKPTDIR

(no associated command

line flag)

The directory where the checkpoint

files will reside.

Any path specifier. Directory from

which POE is

run.

MP_CKPTDIR_PERTASK

(no associated command

line flag)

Specifies whether the checkpoint files

of the parallel tasks should be written

to separate subdirectories under the

directory that is specified by

MP_CKPTDIR.

yes no no

The following table summarizes the environment variables and flags for Job

Specification. It includes information about how to set each variable, the values that

may be specified, and the default value. These environment variables and flags

determine whether or not the Partition Manager should maintain the partition for

multiple job steps, whether commands should be read from a file or STDIN, and

how the partition should be loaded. For a complete description of the variables and

flags summarized in this table, see Chapter 2, “Executing parallel programs,” on

page 7.

Appendix B. POE Environment variables and command line flags 145

|

|
|

|
|
||
|
|

Table 49. POE environment variables and command line flags for job specification

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_CMDFILE

-cmdfile

The name of a POE commands file used

to load the nodes of your partition. If set,

POE will read the commands file rather

than STDIN.

Any file specifier. None

MP_LLFILE

-llfile

The name of a LoadLeveler job command

file for node allocation. If you are

performing specific node allocation, you

can use a LoadLeveler job command file

in conjunction with a host list file. If you

do, the specific nodes listed in the host

list file will be requested from

LoadLeveler.

Any path specifier. None

MP_NEWJOB

-newjob

Whether or not the Partition Manager

maintains your partition for multiple job

steps.

yes no no

MP_PGMMODEL

-pgmmodel

The programming model you are using. spmd mpmd spmd

MP_SAVE_LLFILE

-save_llfile

When using LoadLeveler for node

allocation, the name of the output

LoadLeveler job command file to be

generated by the Partition Manager. The

output LoadLeveler job command file will

show the LoadLeveler settings that result

from the POE environment variables

and/or command line options for the

current invocation of POE. If you use the

MP_SAVE_LLFILE environment variable

for a batch job, or when the MP_LLFILE

environment variable is set (indicating

that a LoadLeveler job command file

should participate in node allocation),

POE will show a warning and will not

save the output job command file.

Any relative or full path name. None

146 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Table 49. POE environment variables and command line flags for job specification (continued)

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_TASK_AFFINITY

-task_affinity

This causes the PMD to attach each task

of a parallel job to one of the system

resource sets (rsets) at the MCM level,

thus constraining the task (and all its

threads) to run within that MCM. If the

task has an inherited resource set, the

attach honors the constraints of the

inherited resource set. When POE is run

under LoadLeveler 3.3.1 or later (which

includes all User Space jobs), POE relies

on LoadLeveler to handle scheduling

affinity, based on LoadLeveler job control

file keywords that POE sets up in

submitting the job.

For AIX 5L V5.3 TL 5300-05, it is

recommended that the system

administrator configure the computing

node to use memory affinity with various

combinations of the memplace_* options

of the vmo command.

Systems with Dual Chip Modules (DCMs)

are treated as if each DCM was an MCM.

Note: The MP_TASK_AFFINITY settings

are ignored for batch jobs. If a batch job

requires memory affinity, the LoadLeveler

RSET and MCM_AFFINITY_OPTIONS

keywords need to be specified. Refer to

IBM Tivoli Workload Scheduler

LoadLeveler: Using and Administering for

more information.

SNI Specifies that the PMD select

the MCM to which the first

adapter window is attached.

When run under LoadLeveler

3.3.1 or later, POE will set the

LoadLeveler

MCM_AFFINITY_OPTIONS

keyword to MCM_SNI_PREF,

and MCM_DISTRIBUTE, and

the RSET keyword to

RSET_MCM_AFFINITY,

allowing LoadLeveler to

handle scheduling affinity.

MCM Specifies that the PMD

assigns tasks on a

round-robin basis to the

MCMs in the inherited

resource set. If WLM is not

being used, this is most

useful when a node is being

used for only one job. When

run under LoadLeveler 3.3.1

or later, POE sets the

LoadLeveler

MCM_AFFINITY_OPTIONS

keyword to

MCM_MEM_PREF,

MCM_SNI_NONE, and

MCM_DISTRIBUTE, and the

RSET keyword to

RSET_MCM_AFFINITY,

allowing LoadLeveler to

handle scheduling affinity.

-1 Specifies that no affinity

request is to be made.

mcm_list

Specifies a set of system

level (LPAR) logical MCMs

that can be attached to. Tasks

of this job will be assigned

round-robin to this set, within

the constraint of an inherited

rset, if any. Any MCMs out

side the constraint set will be

attempted, but fail. This

option is only valid when

running either without

LoadLeveler, or with

LoadLeveler Version 3.2 (or

earlier) that does not support

scheduling affinity.

None

Appendix B. POE Environment variables and command line flags 147

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

The following table summarizes the environment variables and flags for determining

how I/O from the parallel tasks should be handled. It includes information about

how to set each variable, the values that may be specified, and the default value.

These environment variables and flags set the input and output modes, and

determine whether or not output is labeled by task id. For a complete description of

the variables and flags summarized in this table, see “Managing standard input,

output, and error” on page 37.

 Table 50. POE environment variables and command line flags for I/O control

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_LABELIO

-labelio

Whether or not output from the parallel

tasks is labeled by task id.

yes no no (yes for pdbx)

MP_STDINMODE

-stdinmode

The input mode. This determines how

input is managed for the parallel tasks.

all All tasks receive

the same input

data from STDIN.

none No tasks receive

input data from

STDIN; STDIN will

be used by the

home node only.

a task id

STDIN is only sent

to the task

identified.

all

MP_STDOUTMODE

-stdoutmode

The output mode. This determines how

STDOUT is handled by the parallel tasks.

One of the following:

unordered

All tasks write

output data to

STDOUT

asynchronously.

ordered

Output data from

each parallel task

is written to its own

buffer. Later, all

buffers are flushed,

in task order, to

STDOUT.

a task id

Only the task

indicated writes

output data to

STDOUT.

unordered

The following table summarizes the environment variables and flags for collecting

diagnostic information. It includes information about how to set each variable, the

values that may be specified, and the default value. These environment variables

and flags enable you to generate diagnostic information that may be required by the

IBM Support Center in resolving PE-related problems.

148 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|
|
|
|

|
|
|
|
|

Table 51. POE environment variables and command line flags for diagnostic information

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_INFOLEVEL

-infolevel U -ilevel U

The level of message reporting. One of the following

integers:

0 Error

1 Warning and error

2 Informational,

warning, and error

3 Informational,

warning, and error.

Also reports

high-level

diagnostic

messages for use

by the IBM

Support Center.

4, 5, 6 Informational,

warning, and error.

Also reports high-

and low-level

diagnostic

messages for use

by the IBM

Support Center.

1

MP_PMDLOG

-pmdlog

Whether or not diagnostic messages

should be logged to a file in /tmp on each

of the remote nodes. Typically, this

environment variable/command line flag is

only used under the direction of the IBM

Support Center in resolving a PE-related

problem.

yes no no

MP_DEBUG_INITIAL_

STOP

(no associated

command line flag)

The initial breakpoint in the application

where pdbx will get control.

One of the following:

 “filename”:line_number

 function_name

The first

executable source

line in the main

routine.

MP_DEBUG_

NOTIMEOUT

-debug_notimeout

A debugging aid that allows programmers

to attach to one or more of their tasks

without the concern that some other task

may reach a timeout.

Any non-null string will

activate this flag.

no

The following table summarizes the environment variables and flags for the

Message Passing Interface. It includes information about how to set each variable,

the values that may be specified, and the default value. These environment

variables and flags allow you to change message and memory sizes, as well as

other message passing information.

Appendix B. POE Environment variables and command line flags 149

|
|
|
|
|

Table 52. POE environment variables and command line flags for Message Passing Interface (MPI)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_ACK_THRESH

-ack_thresh

Allows the user to control the

packet acknowledgement

threshold. Specify a positive

integer.

A positive integer limited to 31 30

MP_BUFFER_MEM

-buffer_mem

See “MP_BUFFER_MEM details” on page 155. 64 MB

(User Space

 and IP)

MP_CC_SCRATCH_BUF

-cc_scratch_buf

Use the fastest collective

communication algorithm even if

that algorithm requires

allocation of more scratch buffer

space.

yes

no

yes

MP_CLOCK_SOURCE

-clock_source

To use the high performance

switch clock as a time source.

See IBM Parallel Environment:

MPI Programming Guide.

AIX

SWITCH

None. See IBM

Parallel

Environment:

MPI

Programming

Guide , the

table entitled:

How the clock

source is

determined for

more

information.

MP_CSS_INTERRUPT

-css_interrupt

To specify whether or not

arriving packets generate

interrupts. Using this

environment variable may

provide better performance for

certain applications. Setting this

variable explicitly will suppress

the MPI-directed switching of

interrupt mode, leaving the user

in control for the rest of the run.

For more information, refer to

theMPI_FILE_OPEN and

MPI_WIN_CREATE subroutines

in IBM Parallel Environment:

MPI Subroutine Reference.

yes

no

no

150 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Table 52. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_EAGER_LIMIT

-eager_limit

To change the threshold value

for message size, above which

rendezvous protocol is used.

To ensure that at least 32

messages can be outstanding

between any two tasks,

MP_EAGER_LIMIT will be

adjusted based on the number

of tasks according to the

following table, when the user

has specified neither

MP_BUFFER_MEM nor

MP_EAGER_LIMIT:

Number of

Tasks MP_EAGER_LIMIT

 1 to 256 32768

 257 to 512 16384

 513 to 1024 8192

1025 to 2048 4096

2049 to 4096 2048

4097 to 8192 1024

The maximum value for

MP_EAGER_LIMIT is 256 KB

(262144 bytes). Any value that

is less than 64 bytes but greater

than zero bytes is automatically

increased to 64 bytes. A value

of zero bytes is valid, and

indicates that eager send mode

is not to be used for the job.

A non-power of 2 value will be

rounded up to the nearest

power of 2. A value may be

adjusted if the early arrival

buffer (MP_BUFFER_MEM) is

too small.

nnnnn

nnK (where:

K = 1024 bytes)

4096

MP_HINTS_FILTERED

-hints_filtered

To specify whether or not MPI

info objects reject hints (key

and value pairs) that are not

meaningful to the MPI

implementation.

yes

no

yes

Appendix B. POE Environment variables and command line flags 151

Table 52. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_IONODEFILE

-ionodefile

To specify the name of a

parallel I/O node file — a text

file that lists the nodes that

should be handling parallel I/O.

Setting this variable enables

you to limit the number of

nodes that participate in parallel

I/O and guarantees that all I/O

operations are performed on the

same node. See “Determining

which nodes will participate in

parallel file I/O” on page 44 for

more information.

Any relative path name or full

path name.

None. All nodes

will participate

in parallel I/O.

MP_MSG_ENVELOPE_BUF

-msg_envelope_buf

The size of the message

envelope buffer (that is,

uncompleted send and receive

descriptors).

Any positive number. There is

no upper limit, but any value

less than 1 MB is ignored.

8 MB

MP_POLLING_INTERVAL

-polling_interval

To change the polling interval

(in microseconds).

An integer between 1 and

2 billion.

400000

MP_RETRANSMIT_INTERVAL

-retransmit_interval

MP_RETRANSMIT_

INTERVAL=nnnn and its

command line equivalent,

-retransmit_interval=nnnn,

control how often the

communication subsystem

library checks to see if it should

retransmit packets that have not

been acknowledged. The value

nnnn is the number of polling

loops between checks.

The acceptable range

is from 1000 to INT_MAX

10000 (IP)

400000

(User Space)

MP_LAPI_TRACE_LEVEL Used in conjunction with AIX

tracing for debug purposes.

Levels 0-5 are supported.

Levels 0-5 0

152 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Table 52. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_USE_BULK_XFER

-use_bulk_xfer

Exploits the high performance

switch data transfer mechanism.

In other environments, this

variable does not have any

meaning and is ignored.

Before you can use

MP_USE_BULK_XFER, the

system administrator must first

enable Remote Direct Memory

Access (RDMA). For more

information, see IBM Parallel

Environment: Installation. In

other environments, this

variable does not have any

meaning and is ignored.

Note that when you use this

environment variable, you also

need to consider the value of

the

MP_BULK_MIN_MSG_SIZE

environment variable. Messages

with lengths that are greater

than the value specified

MP_BULK_MIN_MSG_SIZE

will use the bulk transfer path, if

it is available. For more

information, see the entry for

MP_BULK_MIN_MSG_SIZE in

this table.

yes

no

no

MP_BULK_MIN_MSG_SIZE

-bulk_min_msg_size

Contiguous messages with data

lengths greater than or equal to

the value you specify for this

environment variable will use

the bulk transfer path, if it is

available. Messages with data

lengths that are smaller than

the value you specify for this

environment variable, or are

noncontiguous, will use packet

mode transfer.

The acceptable range is from

4096 to 2147483647

(INT_MAX).

Possible values:

 nnnnn (byte)

nnnK (where:

 K = 1024 bytes)

nnM (where:

 M = 1024*1024 bytes)

nnG (where:

 G = 1 billion bytes)

153600

MP_RDMA_COUNT

-rdma_count

To specify the number of user

rCxt blocks. It supports the

specification of multiple values

when multiple protocols are

involved.

m for a single protocol

m.n for multiple protocols. The

values are positional; m is for

MPI, n is for LAPI. Only used

when MP_MSG_API=mpi.lapi.

Appendix B. POE Environment variables and command line flags 153

Table 52. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_SHARED_MEMORY

-shared_memory

To specify the use of shared

memory (instead of IP or the

high performance switch) for

message passing between

tasks running on the same

node.

Note: In past releases, the

MP_SHM_CC environment

variable was used to enable or

disable the use of shared

memory for certain 64-bit MPI

collective communication

operations. Beginning with the

PE 4.2 release, this

environment variable has been

removed. You should now use

MP_SHARED_MEMORY to

enable shared memory for both

collective communication and

point-to-point routines. The

default setting for

MP_SHARED_MEMORY is yes

(enable shared memory).

yes

no

yes

MP_SINGLE_THREAD

-single_thread

To avoid lock overheads in a

program that is known to be

single-threaded. MPE_I

nonblocking collective, MPI-IO

and MPI one-sided are

unavailable if this variable is set

to yes. Results are undefined if

this variable is set to yes with

multiple application message

passing threads in use. See

IBM Parallel Environment: MPI

Programming Guide for more

information.

yes

no

no

MP_THREAD_STACKSIZE

-thread_stacksize

To specify the additional stack

size allocated for user

subroutines running on an MPI

service thread. If you do not

allocate enough space, the

program may encounter a

SIGSEGV exception or more

subtle failures.

nnnnn

nnnK (where:

K = 1024 bytes)

nnM (where:

M = 1024*1024 bytes)

0

MP_TIMEOUT

None

To change the length of time (in

seconds) the communication

subsystem will wait for a

connection to be established

during message-passing

initialization.

An integer greater than 0 150

154 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Table 52. POE environment variables and command line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command Line Flag Set: Possible Values: Default:

MP_UDP_PACKET_SIZE

-udp_packet_size

Allows the user to control the

packet size. Specify a positive

integer.

A positive integer 8K if

MP_EUIDEVICE

is not set or is

set to a value

of enX. 64K if

MP_EUIDEVICE

is set to value

other than enX.

MP_WAIT_MODE

-wait_mode

Set: To specify how a thread or

task behaves when it discovers

it is blocked, waiting for a

message to arrive.

nopoll

poll

sleep

yield

poll (for User

Space and IP)

MP_IO_BUFFER_SIZE

-io_buffer_size

To specify the default size of

the data buffer used by MPI-IO

agents.

An integer less than or equal

to 128 MB, in one of these

formats:

nnnnn

nnnK (where K=1024 bytes)

nnnM (where M=1024*1024

bytes)

The number of

bytes that

corresponds to

16 file blocks.

MP_IO_ERRLOG

-io_errlog

To specify whether or not to

turn on I/O error logging.

yes

no

no

MP_REXMIT_BUF_SIZE

-rexmit_buf_size

The maximum LAPI level

message size that will be

buffered locally, to more quickly

free up the user send buffer.

This sets the size of the local

buffers that will be allocated to

store such messages, and will

impact memory usage, while

potentially improving

performance. The MPI

application message size

supported is smaller by, at

most, 32 bytes.

nnn bytes (where:

nnn > 0 bytes)

16352 bytes

MP_REXMIT_BUF_CNT

-rexmit_buf_cnt

The number of retransmit

buffers that will be allocated per

task. Each buffer is of size

MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This

count controls the number of

in-flight messages that can be

buffered to allow prompt return

of application send buffers.

nnn (where:

nnn > 0)

128

MP_BUFFER_MEM details

Set:

To control the amount of memory PE MPI allows for the buffering of early arrival

message data. Message data that is sent without knowing if the receive is posted is

said to be sent eagerly. If the message data arrives before the receive is posted,

this is called an early arrival and must be buffered at the receive side.

Appendix B. POE Environment variables and command line flags 155

There are two way this environment variable can be used:

1. To specify the pool size for memory to be allocated at MPI initialization time and

dedicated to buffering of early arrivals. Management of pool memory for each

early arrival is fast, which helps performance, but memory that is set aside in

this pool is not available for other uses. Eager sending is throttled by PE MPI to

be certain there will never be an early arrival that cannot fit within the pool. (To

throttle a car engine is to choke off its air and fuel intake by lifting your foot

from the gas pedal when you want to keep the car from going faster than you

can control).

2. To specify the pool size for memory to be allocated at MPI initialization time

and, with a second argument, an upper bound of memory to be used if the

preallocated pool is not sufficient. Eager sending is throttled to be certain there

will never be an early arrival that cannot fit within the upper bound. Any early

arrival will be stored in the preallocated pool using its faster memory

management if there is room, but if not, malloc and free will be used.

The constraints on eager send must be pessimistic because they must

guarantee an early arrival buffer no matter how the application behaves. Real

applications at large task counts may suffer performance loss due to pessimistic

throttling of eager sending, even though the application has only a modest need

for early arrival buffering.

Setting a higher bound allows more and larger messages to be sent eagerly. If

the application is well behaved, it is likely that the preallocated pool will supply

all the buffer space needed. If not, malloc and free will be used but never

beyond the stated upper bound.

Possible values:

nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where: M = 1024*1024 bytes)

nnG (where: G = 1 billion bytes)

Formats:

M1

M1,M2

,M2 (a comma followed by the M2 value)

M1 specifies the size of the pool to be allocated at initialization time. M1 must be

between 0 and 256 MB.

M2 specifies the upper bound of memory that PE MPI will allow to be used for early

arrival buffering in the most extreme case of sends without waiting receives. PE

MPI will throttle senders back to rendezvous protocol (stop trying to use eager

send) before allowing the early arrivals at a receive side to overflow the upper

bound.

There is no limit enforced on the value you can specify for M2, but be aware that a

program that does not behave as expected has the potential to malloc this much

memory, and terminate if it is not available.

When MP_BUFFER_MEM is allowed to default, or is specified with a single

argument, M1, the upper bound is set to the pool size, and eager sending will be

throttled soon enough at each sender to ensure that the buffer pool cannot overflow

at any receive side. If M2 is smaller than M1, M2 is ignored.

156 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

The format that omits M1 is used to tell PE MPI to use its default size preallocated

pool, but set the upper bound as specified with M2. This removes the need for a

user to remember the default M1 value when the intention is to only change the M2

value.

It is expected that only jobs with hundreds of task will have any need to set M2. For

most of these jobs, there will be an M1,M2 setting that eliminates the need for PE

MPI to throttle eager sends, while allowing all early arrivals that the application

actually creates to be buffered within the preallocated pool.

IMPORTANT

The default size of the Early Arrival buffer has been changed from 2.8 MB to

64 MB for 32-bit IP applications. This is important to note, because the new

default could cause your application to fail due to insufficient memory. As a

result, you may need to adjust your application’s memory allocation. For more

information, see 6.

 The following table summarizes the variables and flags for core file generation. It

includes information about how to set each variable, the values that may be

specified, and the default value.

 Table 53. POE environment variables and command line flags for corefile generation

The Environment

Variable/Command

Line Flag(s): Set: Possible Values: Default:

MP_COREDIR

-coredir

Creates a separate directory for each

task’s core file.

Any valid directory name, or

″none″ to bypass creating a

new directory.

coredir.taskid

MP_COREFILE_

FORMAT

-corefile_format

The format of corefiles generated when

processes terminate abnormally.

The string ″STDERR″ (to

specify that the lightweight

corefile information should

be written to standard error)

or any other string (to

specify the lightweight

corefile name).

If not set/specified,

standard AIX

corefiles will be

generated.

MP_COREFILE_

SIGTERM

-corefile_sigterm

Determines if POE should generate a

core file when a SIGTERM signal is

received. Valid values are yes and no. If

not set, the default is no.

yes, no no

The following table summarizes some miscellaneous environment variables and

flags. It includes information about how to set each variable, the values that may be

specified, and the default value. These environment variables and flags enable

additional error checking and let you set a dispatch priority class for execution.

Appendix B. POE Environment variables and command line flags 157

|
|
|
|
|

|
|
|

|
|
|
|

Table 54. Other POE environment variables and command line flags

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_BYTECOUNT (no

associated command line

flag)

For users who are collecting byte

count data (the number of bytes sent

and received) using the Performance

Collection Tool, this variable specifies

which PE Benchmarker profiling

library should be linked to the

application. You must set

MP_BYTECOUNT before invoking

the appropriate compiler script

(mpcc_r, mpCC-r, mpxlf_r, mpxlf90_r,

or mpxlf95_r)

mpi

lapi

both

None

MP_DBXPROMPTMOD (no

associated command line

flag)

A modified dbx prompt. The dbx

prompt \n(dbx) is used by the pdbx

command as an indicator denoting

that a dbx subcommand has

completed. This environment variable

modifies that prompt. Any value

assigned to it will have a “.”

prepended and will then be inserted

in the \n(dbx) prompt between the “x”

and the “)”. This environment variable

is useful when the string \n(dbx) is

present in the output of the program

being debugged.

Any string. None

MP_EUIDEVELOP

-euidevelop

Controls the level of parameter

checking during execution. Setting

this to yes enables some intertask

parameter checking which may help

uncover certain problems, but slows

execution. Normal mode does only

relatively inexpensive, local

parameter checking. Setting this

variable to min allows PE MPI to

bypass parameter checking on all

send and receive operations. yes or

deb (debug) checking is intended for

developing applications, and can

significantly slow performance. min

should only be used with well tested

applications because a bug in an

application running with min will not

provide useful error feedback.

yes (for develop mode),

no or nor (for normal mode),

deb (for debug mode)

min (for minimum mode).

no

MP_STATISTICS

-statistics

Provides the ability to gather

communication statistics for User

Space jobs.

yes

no

print

no

MP_FENCE

(no associated command

line flag)

A “fence” character string for

separating arguments you want

parsed by POE from those you do

not.

Any string. None

158 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|
|
|
|
|
|
|

Table 54. Other POE environment variables and command line flags (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_NOARGLIST

(no associated command

line flag)

Whether or not POE ignores the

argument list. If set to yes, POE will

not attempt to remove POE

command line flags before passing

the argument list to the user’s

program.

yes no no

MP_PRIORITY

(no associated command

line flag)

A dispatch priority class for execution

or a string of high/low priority values.

See IBM Parallel Environment:

Installation for more information on

dispatch priority classes.

Any of the dispatch priority

classes set up by the

system administrator or a

string of high/low priority

values in the file

/etc/poe.priority.

None

MP_PRIORITY_LOG

-priority_log

Determines whether or not diagnostic

messages should be logged to the

POE priority adjustment coscheduler

log file in /tmp/pmadjpri.log on each

of the remote nodes. This variable

should only be used in conjunction

with the POE coscheduler

MP_PRIORITY variable.

The value of this environment

variable can be overridden using the

-priority_log flag.

yes

no

yes

MP_PRIORITY_NTP

-priority_ntp

Determines whether the POE priority

adjustment coscheduler will turn NTP

off during the priority adjustment

period, or leave it running.

The value of no (which is the default)

instructs the POE coscheduler to turn

the NTP daemon off (if it was

running) and restart NTP later, after

the coscheduler completes. Specify a

value of yes to inform the

coscheduler to keep NTP running

during the priority adjustment cycles

(if NTP was not running, NTP will not

be started). If MP_PRIORITY_NTP is

not set, the default is no.

The value of this environment

variable can be overridden using the

-priority_ntp flag.

yes

no

no

Appendix B. POE Environment variables and command line flags 159

Table 54. Other POE environment variables and command line flags (continued)

The Environment

Variable/Command Line

Flag(s): Set: Possible Values: Default:

MP_PRINTENV

-printenv

Whether to produce a report of the

current settings of MPI environment

variables, across all tasks in a job. If

yes is specified, the MPI environment

variable information is gathered at

initialization time from all tasks, and

forwarded to task 0, where the report

is prepared. If a script_name is

specified, the script is run on each

node, and the output script is

forwarded to task 0 and included in

the report.

When a variable’s value is the same

for all tasks, it is printed only once. If

it is different for some tasks, an

asterisk (*) appears in the report after

the word ″Task″.

no Do not produce a

report of MPI

environment

variable settings.

yes Produce a report

of MPI

environment

variable settings.

script_name

Produce the report

(same as yes),

then run the script

specified here.

no

MP_UTE

To include the UTE (Unified Trace

Environment) library in the link step,

allowing the user to collect data from

the application using PE

Benchmarker. For more information,

see IBM Parallel Environment:

Operation and Use, Volume 2.

yes Include the UTE

library in the link

step.

no Do not include the

UTE library in the

link step.

no

MP_TLP_REQUIRED

-tlp_required

Specifies to POE whether to check to

see if jobs being executed have been

compiled for large pages, and when it

finds a job that was not, the action to

take.

none POE takes no

action.

warn POE detects and

issues a warning

message for any

job that was not

compiled for large

pages.

kill POE to detects

and kills any job

that was not

compiled for large

pages.

none

160 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

|

|

|
|
|
|
|

||
|

||
|
|
|
|
|

||
|
|
|
|

|

Appendix C. Accessibility features for PE

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Parallel

Environment. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v Keys that are tactilely discernible and do not activate just by touching them.

v Industry-standard devices for ports and connectors.

v The attachment of alternative input and output devices.

Note: The IBM eServer Cluster Information Center and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all

features using the keyboard instead of the mouse.

Keyboard navigation

This product uses standard Microsoft® Windows navigation keys.

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1993, 2006 161

162 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2006 163

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

164 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions

to the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee,

July 18, 1997. The second volume includes a section identified as MPI 1.2 with

clarifications and limited enhancements to MPI 1.1. It also contains the extensions

identified as MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken

together constitute the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

Trademarks

The following are trademarks of International Business Machines Corporation in the

United States, other countries, or both:

 AFS

 AIX

 AIX 5L

 BladeCenter®

 DFS

 eServer

 IBM

 IBMLink™

 LoadLeveler

 OpenPower

 POWER

 POWER3

 pSeries

 RS/6000

 SP

 System p5

 Tivoli

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel Centrino™, Intel Centrino logo,

Celeron®, Intel Xeon™, Intel SpeedStep®, Itanium®, and Pentium® are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Notices 165

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

166 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Glossary

A

AFS. Andrew File System.

address. A value, possibly a character or group of

characters that identifies a register, a device, a

particular part of storage, or some other data source or

destination.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical computing

applications, including high-function graphics and

floating-point computations.

API. Application programming interface.

application. The use to which a data processing

system is put; for example, a payroll application, an

airline reservation application.

argument. A parameter passed between a calling

program and a called program or subprogram.

attribute. A named property of an entity.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. For a specific amount of time, the amount

of data that can be transmitted. Bandwidth is expressed

in bits or bytes per second (bps) for digital devices, and

in cycles per second (Hz) for analog devices.

blocking operation. An operation that does not

complete until the operation either succeeds or fails. For

example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or to

a specified program.

broadcast operation. A communication operation

where one processor sends (or broadcasts) a message

to all other processors.

buffer. A portion of storage used to hold input or

output data temporarily.

C

C. A general-purpose programming language. It was

formalized by Uniforum in 1983 and the ANSI standards

committee for the C language in 1984.

C++. A general-purpose programming language that is

based on the C language. C++ includes extensions that

support an object-oriented programming paradigm.

Extensions include:

v strong typing

v data abstraction and encapsulation

v polymorphism through function overloading and

templates

v class inheritance.

chaotic relaxation. An iterative relaxation method that

uses a combination of the Gauss-Seidel and

Jacobi-Seidel methods. The array of discrete values is

divided into subregions that can be operated on in

parallel. The subregion boundaries are calculated using

the Jacobi-Seidel method, while the subregion interiors

are calculated using the Gauss-Seidel method. See also

Gauss-Seidel.

client. A function that requests services from a server

and makes them available to the user.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

Cluster 1600. See IBM eServer Cluster 1600.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts, reductions, and the MPI_Allreduce

subroutine are all examples of collective communication

operations. All tasks in a communicator must participate.

command alias. When using the PE command-line

debugger pdbx, you can create abbreviations for

existing commands using the pdbx alias command.

These abbreviations are known as command aliases.

communicator. An MPI object that describes the

communication context and an associated group of

processes.

compile. To translate a source program into an

executable program.

condition. One of a set of specified values that a data

item can assume.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

© Copyright IBM Corp. 1993, 2006 167

Segmentation Fault or a severe user error. The current

program state is needed for the programmer to

diagnose and correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated for an

unexpected error. See also core dump.

current context. When using the pdbx debugger,

control of the parallel program and the display of its

data can be limited to a subset of the tasks belonging to

that program. This subset of tasks is called the current

context. You can set the current context to be a single

task, multiple tasks, or all the tasks in the program.

D

data decomposition. A method of breaking up (or

decomposing) a program into smaller parts to exploit

parallelism. One divides the program by dividing the

data (usually arrays) into smaller parts and operating on

each part independently.

data parallelism. Refers to situations where parallel

tasks perform the same computation on different sets of

data.

dbx. A symbolic command-line debugger that is often

provided with UNIX systems. The PE command-line

debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in

which you can manually control the execution of a

program. It also provides the ability to display the

program’s data and operation.

distributed shell (dsh). An Parallel System Support

Programs command that lets you issue commands to a

group of hosts in parallel. See IBM Parallel System

Support Programs for AIX: Command and Technical

Reference for details.

domain name. The hierarchical identification of a host

system (in a network), consisting of human-readable

labels, separated by decimal points.

DPCL target application. The executable program

that is instrumented by a Dynamic Probe Class Library

(DPCL) analysis tool. It is the process (or processes)

into which the DPCL analysis tool inserts probes. A

target application could be a serial or parallel program.

Furthermore, if the target application is a parallel

program, it could follow either the SPMD or the MPMD

model, and may be designed for either a

message-passing or a shared-memory system.

E

environment variable. (1) A variable that describes

the operating environment of the process. Common

environment variables describe the home directory,

command search path, and the current time zone. (2) A

variable that is included in the current software

environment and is therefore available to any called

program that requests it.

Ethernet. A baseband local area network (LAN) that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses carrier sense

multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the

completion of an asynchronous operation such as an

input/output operation, for example.

executable. A program that has been link-edited and

therefore can be run in a processor.

execution. To perform the actions specified by a

program or a portion of a program.

expression. In programming languages, a language

construct for computing a value from one or more

operands.

F

fairness. A policy in which tasks, threads, or

processes must be allowed eventual access to a

resource for which they are competing. For example, if

multiple threads are simultaneously seeking a lock, no

set of circumstances can cause any thread to wait

indefinitely for access to the lock.

Fiber Distributed Data Interface (FDDI). An American

National Standards Institute (ANSI) standard for a local

area network (LAN) using optical fiber cables. An FDDI

LAN can be up to 100 kilometers (62 miles) long, and

can include up to 500 system units. There can be up to

2 kilometers (1.24 miles) between system units and

concentrators.

file system. The collection of files and file

management structures on a physical or logical mass

storage device, such as a diskette or minidisk.

fileset. (1) An individually-installable option or update.

Options provide specific functions. Updates correct an

error in, or enhance, a previously installed program. (2)

One or more separately-installable, logically-grouped

units in an installation package. See also licensed

program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern

programming languages, and the most popular

language for scientific and engineering computations. Its

name is a contraction of FORmula TRANslation. The

two most common FORTRAN versions are FORTRAN

168 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

77, originally standardized in 1978, and FORTRAN 90.

FORTRAN 77 is a proper subset of FORTRAN 90.

function cycle. A chain of calls in which the first caller

is also the last to be called. A function that calls itself

recursively is not considered a function cycle.

functional decomposition. A method of dividing the

work in a program to exploit parallelism. The program is

divided into independent pieces of functionality, which

are distributed to independent processors. This method

is in contrast to data decomposition, which distributes

the same work over different data to independent

processors.

functional parallelism. Refers to situations where

parallel tasks specialize in particular work.

G

Gauss-Seidel. An iterative relaxation method for

solving Laplace’s equation. It calculates the general

solution by finding particular solutions to a set of

discrete points distributed throughout the area in

question. The values of the individual points are

obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the

i+1st iteration, Jacobi-Seidel uses only values calculated

in the ith iteration. Gauss-Seidel uses a mixture of

values calculated in the ith and i+1st iterations.

global max. The maximum value across all

processors for a given variable. It is global in the sense

that it is global to the available processors.

global variable. A variable defined in one portion of a

computer program and used in at least one other

portion of the computer program.

gprof. A UNIX command that produces an execution

profile of C, COBOL, FORTRAN, or Pascal programs.

The execution profile is in a textual and tabular format.

It is useful for identifying which routines use the most

CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer

interface consisting of a visual metaphor of a real-world

scene, often of a desktop. Within that scene are icons,

which represent actual objects, that the user can access

and manipulate with a pointing device.

GUI. Graphical user interface.

H

high performance switch. The high-performance

message-passing network that connects all processor

nodes together.

hook. A pdbx command that lets you re-establish

control over all tasks in the current context that were

previously unhooked with this command.

home node. The node from which an application

developer compiles and runs his program. The home

node can be any workstation on the LAN.

host. A computer connected to a network that provides

an access method to that network. A host provides

end-user services.

host list file. A file that contains a list of host names,

and possibly other information, that was defined by the

application that reads it.

host name. The name used to uniquely identify any

computer on a network.

hot spot. A memory location or synchronization

resource for which multiple processors compete

excessively. This competition can cause a

disproportionately large performance degradation when

one processor that seeks the resource blocks,

preventing many other processors from having it,

thereby forcing them to become idle.

I

IBM eServer Cluster 1600. An IBM eServer Cluster

1600 is any CSM-managed cluster comprised of

POWER™ microprocessor based systems (including

RS/6000® SMPs, RS/6000 SP nodes, and pSeries

SMPs).

IBM Parallel Environment (PE) for AIX. A licensed

program that provides an execution and development

environment for parallel C, C++, and FORTRAN

programs. It also includes tools for debugging, profiling,

and tuning parallel programs.

installation image. A file or collection of files that are

required in order to install a software product on system

nodes. These files are in a form that allows them to be

installed or removed with the AIX installp command.

See also fileset, licensed program, and package.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). The IP protocol lies beneath

the UDP protocol, which provides packet delivery

between user processes and the TCP protocol, which

provides reliable message delivery between user

processes.

IP. Internet Protocol.

J

Jacobi-Seidel. See Gauss-Seidel.

Glossary 169

|
|
|

 |
 |
 |
 |
 |

 |
 |
 |
 |
 |

 |
 |
 |
 |
 |

K

Kerberos. A publicly available security and

authentication product that works with the Parallel

System Support Programs software to authenticate the

execution of remote commands.

kernel. The core portion of the UNIX operating system

that controls the resources of the CPU and allocates

them to the users. The kernel is memory-resident, is

said to run in kernel mode (in other words, at higher

execution priority level than user mode), and is

protected from user tampering by the hardware.

L

Laplace’s equation. A homogeneous partial

differential equation used to describe heat transfer,

electric fields, and many other applications.

latency. The time interval between the initiation of a

send by an origin task and the completion of the

matching receive by the target task. More generally,

latency is the time between a task initiating data transfer

and the time that transfer is recognized as complete at

the data destination.

licensed program. A collection of software packages

sold as a product that customers pay for to license. A

licensed program can consist of packages and file sets

a customer would install. These packages and file sets

bear a copyright and are offered under the terms and

conditions of a licensing agreement. See also fileset

and package.

lightweight corefiles. An alternative to standard AIX

corefiles. Corefiles produced in the Standardized

Lightweight Corefile Format provide simple process

stack traces (listings of function calls that led to the

error) and consume fewer system resources than

traditional corefiles.

LoadLeveler. A job management system that works

with POE to let users run jobs and match processing

needs with system resources, in order to make better

use of the system.

local variable. A variable that is defined and used

only in one specified portion of a computer program.

loop unrolling. A program transformation that makes

multiple copies of the body of a loop, also placing the

copies within the body of the loop. The loop trip count

and index are adjusted appropriately so the new loop

computes the same values as the original. This

transformation makes it possible for a compiler to take

additional advantage of instruction pipelining, data

cache effects, and software pipelining.

 See also optimization.

M

management domain . A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) product. Such a domain has a management

server that is used to administer a number of managed

nodes. Only management servers have knowledge of

the whole domain. Managed nodes only know about the

servers managing them; they know nothing of each

other. Contrast with peer domain.

menu. A list of options displayed to the user by a data

processing system, from which the user can select an

action to be initiated.

message catalog. A file created from a message

source file that contains application error and other

messages, which can later be translated into other

languages without having to recompile the application

source code.

message passing. Refers to the process by which

parallel tasks explicitly exchange program data.

Message Passing Interface (MPI). A standardized

API for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data

stream.

Multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

MPI. Message Passing Interface.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit data

to and receive data from other systems and users.

Network Information Services. A set of network

services (for example, a distributed service for retrieving

information about the users, groups, network addresses,

and gateways in a network) that resolve naming and

addressing differences among computers in a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network. (2) A single

location or workstation in a network. Usually a physical

entity, such as a processor.

170 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

 |
 |
 |
 |
 |

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation was

completed. For example, a nonblocking receive will not

wait until a message arrives. By contrast, a blocking

receive will wait. A nonblocking receive must be

completed by a later test or wait.

O

object code. The result of translating a computer

program to a relocatable, low-level form. Object code

contains machine instructions, but symbol names (such

as array, scalar, and procedure names), are not yet

given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly

accurate) term for program performance improvement,

especially for performance improvement done by a

compiler or other program translation software. An

optimizing compiler is one that performs extensive code

transformations in order to obtain an executable that

runs faster but gives the same answer as the original.

Such code transformations, however, can make code

debugging and performance analysis very difficult

because complex code transformations obscure the

correspondence between compiled and original source

code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command-line

options.

P

package. A number of file sets that have been

collected into a single installable image of licensed

programs. Multiple file sets can be bundled together for

installing groups of software together. See also fileset

and licensed program.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

Parallel Operating Environment (POE). An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs. It is abbreviated and commonly

known as POE.

parameter. (1) In FORTRAN, a symbol that is given a

constant value for a specified application. (2) An item in

a menu for which the operator specifies a value or for

which the system provides a value when the menu is

interpreted. (3) A name in a procedure that is used to

refer to an argument that is passed to the procedure.

(4) A particular piece of information that a system or

application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) A

logical collection of nodes to be viewed as one system

or domain. System partitioning is a method of

organizing the system into groups of nodes for testing

or running different levels of software of product

environments.

Partition Manager. The component of the Parallel

Operating Environment (POE) that allocates nodes, sets

up the execution environment for remote tasks, and

manages distribution or collection of standard input

(STDIN), standard output (STDOUT), and standard error

(STDERR).

pdbx. The parallel, symbolic command-line debugging

facility of PE. pdbx is based on the dbx debugger and

has a similar interface.

PE. The Parallel Environment for AIX licensed

program.

peer domain. A set of nodes configured for high

availability by the RSCT configuration manager. Such a

domain has no distinguished or master node. All nodes

are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

performance monitor. A utility that displays how

effectively a system is being used by programs.

PID. Process identifier.

POE. Parallel Operating Environment.

pool. Groups of nodes on a system that are known to

LoadLeveler, and are identified by a pool name or

number.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a send

operation. The partner process issues a receive

operation to accept the data being sent.

procedure. (1) In a programming language, a block,

with or without formal parameters, whose execution is

invoked by means of a procedure call. (2) A set of

related control statements that cause one or more

programs to be performed.

process. A program or command that is actually

running the computer. It consists of a loaded version of

the executable file, its data, its stack, and its kernel data

structures that represent the process’s state within a

multitasking environment. The executable file contains

the machine instructions (and any calls to shared

Glossary 171

 |
 |
 |
 |
 |
 |

 |
 |
 |

objects) that will be executed by the hardware. A

process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and

exit, the process is known to the system by a unique

process identifier (PID).

 Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an

application or program. It is useful to identify which

routines use the most CPU time. See the man page for

prof.

profiling. The act of determining how much CPU time

is used by each function or subroutine in a program.

The histogram or table produced is called the execution

profile.

pthread. A thread that conforms to the POSIX Threads

Programming Model.

R

reduced instruction-set computer. A computer that

uses a small, simplified set of frequently-used

instructions for rapid execution.

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, the arithmetic SUM

operation is a reduction operation that reduces an array

to a scalar value. Other reduction operations include

MAXVAL and MINVAL.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

remote host. Any host on a network except the one

where a particular operator is working.

remote shell (rsh). A command that lets you issue

commands on a remote host.

RISC. See reduced instruction-set computer.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

shell script. A sequence of commands that are to be

executed by a shell interpreter such as the Bourne shell

(sh), the C shell (csh), or the Korn shell (ksh). Script

commands are stored in a file in the same format as if

they were typed at a terminal.

segmentation fault. A system-detected error, usually

caused by referencing an non-valid memory address.

server. A functional unit that provides shared services

to workstations over a network — a file server, a print

server, or a mail server, for example.

signal handling. In the context of a message passing

library (such as MPI), there is a need for asynchronous

operations to manage packet flow and data delivery

while the application is doing computation. This

asynchronous activity can be carried out either by a

signal handler or by a service thread. The early IBM

message passing libraries used a signal handler and

the more recent libraries use service threads. The older

libraries are often referred to as the signal handling

versions.

Single program, multiple data (SPMD). A parallel

programming model in which different processors

execute the same program on different sets of data.

source code. The input to a compiler or assembler,

written in a source language. Contrast with object code.

source line. A line of source code.

SPMD. Single program, multiple data.

standard error (STDERR). An output file intended to

be used for error messages for C programs.

standard input (STDIN). The primary source of data

entered into a command. Standard input comes from

the keyboard unless redirection or piping is used, in

which case standard input can be from a file or the

output from another command.

standard output (STDOUT). The primary destination

of data produced by a command. Standard output goes

to the display unless redirection or piping is used, in

which case standard output can go to a file or to

another command.

STDERR. Standard error.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for

averaging. A 4-point stencil in two dimensions for a

given array cell, x(i,j), uses the four adjacent cells,

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose

execution is invoked by a call. (2) A sequenced set of

instructions or statements that can be used in one or

more computer programs and at one or more points in a

172 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

computer program. (3) A group of instructions that can

be part of another routine or can be called by another

program or routine.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer

installation who designs, controls, and manages the use

of the computer system. (2) The person who is

responsible for setting up, modifying, and maintaining

the Parallel Environment.

T

target application. See DPCL target application.

task. A unit of computation analogous to a process. In

a parallel job, there are two or more concurrent tasks

working together through message passing. Though it is

common to allocate one task per processor, the terms

task and processor are not interchangeable.

thread. A single, separately dispatchable, unit of

execution. There can be one or more threads in a

process, and each thread is executed by the operating

system concurrently.

TPD. Third party debugger.

tracing. In PE, the collection of information about the

execution of the program. This information is

accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program

that, when reached during execution, cause the

debugger to print information about the state of the

program.

trace record. In PE, a collection of information about a

specific event that occurred during the execution of your

program. For example, a trace record is created for

each send and receive operation that occurs in your

program (this is optional and might not be appropriate).

These records are then accumulated into a trace file

that can later be examined.

U

unrolling loops. See loop unrolling.

user. (1) A person who requires the services of a

computing system. (2) Any person or any thing that can

issue or receive commands and message to or from the

information processing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch. User Space maximizes

performance by passing up all kernel involvement in

sending or receiving a message.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. (1) In programming languages, a named

object that may take different values, one at a time. The

values of a variable are usually restricted to one data

type. (2) A quantity that can assume any of a given set

of values. (3) A name used to represent a data item

whose value can be changed while the program is

running. (4) A name used to represent data whose value

can be changed, while the program is running, by

referring to the name of the variable.

X

X Window System. The UNIX industry’s graphics

windowing standard that provides simultaneous views of

several executing programs or processes on high

resolution graphics displays.

Glossary 173

174 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Index

Special characters
-buffer_mem command line flag 150, 155

-clock_source command line flag 150

-css_interrupt command line flag 150

-hints_filtered command line flag 151

-instances command line flag 121

-io_buffer_size command line flag 155

-io_errlog command line flag 155

-ionodefile command line flag 152

-msg_api command line flag 120, 144

-polling_interval command line flag 152

-printenv command line flag 160

-retransmit_interval command line flag 152

-shared_memory command line flag 127, 154

-single_thread command line flag 154

-thread_stacksize command line flag 154

-tlp_required command line flag 160

-udp_packet_size command line flag 124, 155

-wait_mode command line flag 129, 155

A
abbreviated names viii

accessibility 161

keyboard 161

shortcut keys 161

acknowledgments 166

acronyms for product names viii

AIX 1

application 1

argument 36

attribute 53

authorized access 7

B
bandwidth 1

breakpoint 124

buffer 40

C
C 8

C shell 77

C++ 1

cancelling a POE job 62

checkpoint
scenario 47

checkpointing
limitations 47

restrictions 47

checkpointing programs 45

collective communication 98

command
poerestart 46

command line flags
-buffer_mem 150

command line flags (continued)
-clock_source 150

-css_interrupt 150

-eager_limit 151

-hints_filtered 151

-instances 121

-io_buffer_size 155

-io_errlog 155

-ionodefile 152

-msg_api 120, 144

-polling_interval 152

-printenv 160

-retransmit_interval 152

-rexmit_buf_cnt 155

-rexmit_buf_size 155

-shared_memory 127, 154

-single_thread 154

-thread_stacksize 154

-tlp_required 160

-udp_packet_size 124, 155

-wait_mode 129, 155

command line flags, POE 16, 141

commands, PE 85

Communication Subsystem (CSS) 2

communication subsystem library 2

compiling parallel programs 7

condition 74

conventions viii

core file generation 141

corefile generation 157

D
dbx 3

debugger 3

diagnostic information 141, 148

disability 161

E
environment variables

MP_ACK_THRESH 125, 150

MP_BUFFER_MEM 150

MP_CLOCK_SOURCE 150

MP_CSS_INTERRUPT 150

MP_EAGER_LIMIT 151

MP_HINTS_FILTERED 151

MP_INSTANCES 121

MP_IO_BUFFER_SIZE 155

MP_IO_ERRLOG 155

MP_IONODEFILE 152

MP_MSG_API 120, 144

MP_POLLING_INTERVAL 152

MP_PRINTENV 160

MP_RETRANSMIT_INTERVAL 152

MP_REXMIT_BUF_CNT 155

MP_REXMIT_BUF_SIZE 155

© Copyright IBM Corp. 1993, 2006 175

environment variables (continued)
MP_SHARED_MEMORY 127, 154

MP_SINGLE_THREAD 154

MP_THREAD_STACKSIZE 154

MP_TIMEOUT 154

MP_TLP_REQUIRED 160

MP_UDP_PACKET_SIZE 124, 155

MP_UTE 160

MP_WAIT_MODE 129, 155

environment variables, POE 16, 141

executable 7

executing parallel programs 7

execution 1

execution environment 10

F
file system 10

flag 8

flags, command line
-buffer_mem 150

-clock_source 150

-css_interrupt 150

-eager_limit 151

-hints_filtered 151

-instances 121

-io_buffer_size 155

-io_errlog 155

-ionodefile 152

-msg_api 120, 144

-polling_interval 152

-printenv 160

-retransmit_interval 152

-rexmit_buf_cnt 155

-rexmit_buf_size 155

-shared_memory 127, 154

-single_thread 154

-thread_stacksize 154

-tlp_required 160

-udp_packet_size 124, 155

-wait_mode 129, 155

Fortran 1

function 41, 62

G
gprof 3

H
home node 2

host list file 16

host name 16

I
IBM Parallel Environment for AIX 1

Internet Protocol (IP) 2

J
Job Specifications 141, 145

K
killing a POE job 62

L
LAPI timeout 124

latency 1

LoadLeveler, submitting a batch POE job to 73

LookAt message retrieval tool x

Low-level Application Programming Interface (LAPI) 2

M
message catalog 29

message passing 2

message passing call 2

Message Passing Interface (MPI) 1

message passing program 2

message passing routine 2

message retrieval tool, LookAt x

miscellaneous environment variables and flags 141,

157

MP_ACK_THRESH environment variable 125, 150

MP_BUFFER_MEM environment variable 150, 155

MP_CLOCK_SOURCE environment variable 150

MP_CSS_INTERRUPT environment variable 150

MP_HINTS_FILTERED environment variable 151

MP_INSTANCES environment variable 121

MP_IO_BUFFER_SIZE environment variable 155

MP_IO_ERRLOG environment variable 155

MP_IONODEFILE environment variable 152

MP_MSG_API environment variable 120, 144

MP_POLLING_INTERVAL environment variable 152

MP_PRINTENV environment variable 160

MP_RETRANSMIT_INTERVAL environment

variable 152

MP_SHARED_MEMORY environment variable 127,

154

MP_SINGLE_THREAD environment variable 154

MP_THREAD_STACKSIZE environment variable 154

MP_TIMEOUT environment variable 154

MP_TLP_REQUIRED environment variable 160

MP_UDP_PACKET_SIZE environment variable 124,

155

MP_UTE environment variable 160

MP_WAIT_MODE environment variable 129, 155

MPI 141, 149

MPMD (Multiple Program Multiple Data) 1

N
node 1

nonblocking operation 57

176 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

O
option 19

P
Parallel Environment (PE), overview 1, 4

parallel file copy utilities 78

Parallel Operating Environment (POE) 7

executing parallel programs 7

parallel profiling capability 3

parallel programs 7

compiling 7

controlling program execution 34, 54

executing 7

parallel task I/O 141, 148

Parallel Utility Function 41

parallelizing 1

parameter 74

partition 1

Partition Manager 3, 141

pdbx 3

PE commands 85

mcp 85

mcpgath 87

mcpscat 91

mpamddir 95

mpxlf_r 103

mpxlf90_r 103

mpxlf95 109

mpxlf95_r 103

perpms 103

poeckpt 132

poekill 132

poerestart 134

POE
argument limits 37

commands file, loading nodes individually using 30

commands file, reading job steps from 33

compiling parallel programs 7

controlling program execution using 34, 54

executing nonparallel programs using 34

invoking executables in 27, 34

setting up execution environment 10

POE command line flags 16, 141

-ack_thresh 150

-adapter_use 19, 142

-buffer_mem 115, 150

-bulk_min_msg_size 116, 153

-cc_scratch_buf 116

-clock_source 116, 150

-cmdfile 30, 33, 146

-coredir 157

-corefile_format 157

-corefile_format_sigterm 157

-cpu_use 19, 142

-css_interrupt 116, 150

-debug_notimeout 115, 149

-eager_limit 116, 151

-euidevelop 130, 141, 158

-euidevice 25, 142

POE command line flags (continued)
-euilib 23, 143

-euilibpath 24, 143

-hfile 21, 143

-hints_filtered 116, 151

-hostfile 21, 143

-ilevel 141, 149

-infolevel 141, 149

-instances 121, 143

-io_buffer_size 116, 155

-io_errlog 116, 155

-ionodefile 152

-labelio 42, 148

-llfile 146

-msg_api 120, 144

-msg_envelope_buf 116

-newjob 31, 146

-nodes 145

-pgmmodel 28, 146

-pmdlog 123, 149

-polling_interval 116, 152

-printenv 124, 160

-priority_log 159

-priority_ntp 159

-procs 16, 143

-pulse 62, 143

-rdma_count 153

-resd 22, 143

-retransmit_interval 116, 152

-retry 36, 144

-retrycount 36, 144

-rexmit_buf_cnt 116, 155

-rexmit_buf_size 116, 155

-rmpool 26, 144

-save_llfile 146

-savehostfile 20, 145

-shared_memory 127, 154

-single_thread 116, 154

-statistics 116, 124

-stdinmode 38, 148

-stdoutmode 40, 148

-task_affinity 147

-tasks_per_node 145

-thread_stacksize 116, 154

-tlp_required 160

-udp_packet_size 116, 124, 155

-use_bulk_xfer 116, 153

-wait_mode 116, 129, 155

generating diagnostic logs using 43

labeling task output using 42

maintaining partition for multiple job steps using 31

making POE wait for available nodes using 35

managing standard input using 37

managing standard output using 40

setting number of task processes 16

setting the message reporting level using 42

specifying a commands file using 31, 33

specifying a host list file 21

specifying adapter set for message passing

using 24

specifying additional error checking using 35

Index 177

POE command line flags (continued)
specifying communication subsystem library

implementation using 23

specifying programming model using 28

POE environment variables 16, 141

generating diagnostic logs using 43

labeling task output using 42

maintaining partition for multiple job steps using 31

making POE ignore arguments using 36

making POE wait for available nodes using 35

managing standard input using 37

managing standard output using 40

MP_ACK_THRESH 125, 150

MP_ADAPTER_USE 19, 142

MP_BUFFER_MEM 125, 150

MP_BULK_MIN_MSG_SIZE 128, 153

MP_BYTECOUNT 158

MP_CC_SCRATCH_BUF 125

MP_CKPT_DIR_PERTASK 120

MP_CKPTDIR 35, 45, 120, 134, 145

MP_CKPTDIR_PERTASK 145

MP_CKPTFILE 35, 45, 120, 134, 145

MP_CLOCK_SOURCE 126, 150

MP_CMDFILE 30, 33, 146

MP_COREDIR 157

MP_COREFILE_FORMAT 157

MP_COREFILE_SIGTERM 157

MP_CPU_USE 19, 142

MP_CSS_INTERRUPT 126, 150

MP_DBXPROMPTMOD 158

MP_DEBUG_INITIAL_STOP 124, 149

MP_DEBUG_NOTIMEOUT 124, 149

MP_EAGER_LIMIT 126, 151

MP_EUIDEVELOP 130, 158

MP_EUIDEVICE 12, 142

MP_EUILIB 12, 143

MP_EUILIBPATH 24, 143

MP_FENCE 130, 158

MP_HINTS_FILTERED 126, 151

MP_HOSTFILE 11, 136, 143

MP_INFOLEVEL 123, 149

MP_INSTANCES 121, 143

MP_IO_BUFFER_SIZE 129, 155

MP_IO_ERRLOG 129, 155

MP_IONODEFILE 152

MP_LABELIO 34, 148

MP_LAPI_TRACE_LEVEL 127

MP_LLFILE 136, 146

MP_MSG_API 120, 144

MP_MSG_ENVELOPE_BUF 127

MP_NEWJOB 31, 146

MP_NOARGLIST 130, 159

MP_NODES 145

MP_PGMMODEL 28, 146

MP_PMDLOG 123, 149

MP_POLLING_INTERVAL 152

MP_PRINTENV 123, 160

MP_PRIORITY 130, 159

MP_PRIORITY_LOG 131, 159

MP_PRIORITY_NTP 131, 159

MP_PROCS 10, 143

POE environment variables (continued)
MP_PULSE 143

MP_RDMA_COUNT 153

MP_REMOTEDIR 77, 145

MP_RESD 12, 143

MP_RETRANSMIT_INTERVAL 129, 152

MP_RETRY 34, 144

MP_RETRYCOUNT 34, 144

MP_REXMIT_BUF_CNT 129, 155

MP_REXMIT_BUF_SIZE 129, 155

MP_RMPOOL 12, 136, 144

MP_SAVE_LLFILE 146

MP_SAVEHOSTFILE 20, 145

MP_SHARED_MEMORY 127, 154

MP_SINGLE_THREAD 128, 154

MP_STATISTICS 124

MP_STDINMODE 34, 148

MP_STDOUTMODE 34, 148

MP_TASK_AFFINITY 35, 147

MP_TASKS_PER_NODE 145

MP_THREAD_STACKSIZE 128, 154

MP_TIMEOUT 120, 145, 154

MP_TLP_REQUIRED 131, 160

MP_UDP_PACKET_SIZE 124, 155

MP_USE_BULK_XFER 128, 153

MP_UTE 160

MP_WAIT_MODE 129, 155

setting number of task processes 16

setting the message reporting level using 42

specifying a commands file using 31, 33

specifying a host list file 21

specifying adapter set for message passing

using 24

specifying additional error checking using 35

specifying communication subsystem library

implementation using 23

specifying programming model using 28

poerestart 46

process 34

prof 3

R
RDMA

Using RDMA
-use_bulk_xfer 79

MP_USE_BULK_XFER 79

remote node 2

restart
scenario 47

restarting programs 45

S
serial program 1

shell script 3

shortcut keys
keyboard 161

source code 1

SPMD (Single Program Multiple Data) 1

standard error (STDERR) 37

178 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

standard input (STDIN) 37

standard output (STDOUT) 37

stopping a POE job 61

subroutine 7

system administrator 1

T
task 1

trademarks 165

U
user 7

User Space (US) 2

V
variable 3

variables, environment
MP_ACK_THRESH 125

MP_INSTANCES 121

MP_MSG_API 120

MP_SHARED_MEMORY 127

MP_UDP_PACKET_SIZE 124

MP_WAIT_MODE 129

Index 179

180 IBM PE for AIX 5L V4R3: Operation and Use, Vol. 1

Reader’s Comments– We’d like to hear from you

IBM Parallel Environment for AIX 5L

Operation and Use, Volume 1

Using the Parallel Operating Environment

Version 4 Release 3.0

 Publication No. SA22-7948-05

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7948-05

SA22-7948-05

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-D93

SA22-7948-05

	Contents
	Tables
	About this book
	Who should read this book
	How this book is organized
	Overview of contents

	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Using LookAt to look up message explanations

	How to send your comments
	National language support (NLS)
	Summary of changes for Parallel Environment 4.3

	Chapter 1. Introduction
	PE Version 4 Release 3 migration information

	Chapter 2. Executing parallel programs
	Executing parallel programs using POE
	Step 1: Compile the program
	Step 2: Copy files to individual nodes
	Step 3: Set up the execution environment
	Step 3a: Set the MP_PROCS environment variable
	Step 3b: Create a host list file
	Step 3c: Set the MP_HOSTFILE environment variable
	Step 3d: Set the MP_RESD environment variable
	Step 3e: Set the MP_EUILIB environment variable
	Step 3f: Set the MP_EUIDEVICE environment variable
	Step 3g: Set the MP_MSG_API environment variable
	Step 3h: Set the MP_RMPOOL environment variable

	Step 4: Invoke the executable
	Invoking an SPMD program
	Invoking an MPMD program
	Loading a series of programs as job steps
	Invoking a nonparallel program on remote nodes

	Controlling program execution
	Specifying develop mode
	Making POE wait for processor nodes
	Making POE ignore arguments
	Making POE ignore the entire argument list
	Making POE ignore a portion of the argument list

	POE argument limits
	Managing standard input, output, and error
	Managing standard input (STDIN)
	Managing standard output (STDOUT)
	Labeling message output
	Setting the message reporting level for standard error (STDERR)
	Generating a diagnostic log on remote nodes

	Determining which nodes will participate in parallel file I/O
	Checkpointing and restarting programs
	Checkpointing programs
	Restarting programs
	Checkpointing limitations
	Managing checkpoint files
	A checkpoint/restart scenario

	Managing task affinity on large SMP nodes
	Running POE from a shell script

	POE user authorization
	Cluster based security
	Using AIX user authorization

	Using POE with MALLOCDEBUG
	Using POE with AIX large pages

	Chapter 3. Managing POE jobs
	Multi-task corefile
	Support for performance improvements
	Using MP_BUFFER_MEM
	Using MP_CSS_INTERRUPT

	Specifying the format of corefiles or suppressing corefile generation
	Generating standard AIX corefiles
	Generating corefiles for sigterm
	Writing corefile information to standard error
	Generating lightweight corefiles

	Managing large memory parallel jobs
	Stopping a POE job
	Cancelling and killing a POE job
	Detecting remote node failures
	Considerations for using the high performance switch interconnect
	Scenario 1: Explicitly allocating nodes with TWS LoadLeveler
	Scenario 2: Implicitly allocating nodes with TWS LoadLeveler
	Scenario 3: Implicitly allocating nodes with TWS LoadLeveler (mixing dedicated and shared adapters)
	Considerations for data striping, failover and recovery with PE
	Failover and recovery
	Adapter status
	Requesting the use of multiple adapters
	Failover and recovery restrictions
	Data striping
	Communication and memory considerations

	Submitting a batch POE job using TWS LoadLeveler
	Submitting an interactive POE job using a TWS LoadLeveler command file
	Generating an output TWS LoadLeveler job command file

	Running programs under the C shell
	Parallel file copy utilities
	Using RDMA
	Improving Application Scalability Performance
	POE priority adjustment coscheduler
	AIX Dispatcher tuning

	Appendix A. Parallel Environment commands
	mcp
	mcpgath
	mcpscat
	mpamddir
	mpcc_r
	mpCC_r
	mpiexec
	mpxlf_r
	mpxlf90_r
	mpxlf95_r
	poe
	poeckpt
	poekill
	poerestart
	rset_query

	Appendix B. POE Environment variables and command line flags
	MP_BUFFER_MEM details

	Appendix C. Accessibility features for PE
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks
	Acknowledgments

	Glossary
	Index
	Reader's Comments– We'd like to hear from you

